В XIX веке другой математический гений, Карл Фридрих Гаусс, окончательно и твердо провозгласил, что «этим мнимым сущностям может быть приписано объективное бытие»31. Гаусс, конечно, понимал, что мнимым числам не найдется места на числовой оси, а поэтому он попросту поместил их на перпендикулярную ось, которую провел через нулевую точку основной оси, построив таким образом декартову систему координат. В этой системе все действительные числа располагаются на действительной оси, а все мнимые числа — на мнимой оси (рис. 6-17 называется мнимой единицей и обозначается символом i. А поскольку любой квадратный корень отрицательного числа всегда может быть представлен как = =
Таким остроумным способом Гаусс создал прибежище не только для мнимых чисел, но и для всех возможных комбинаций действительных и мнимых чисел, например, (2 + i), (3 —
z = х + iy,
где
Введя это определение, Гаусс создал специальную алгебру комплексных чисел и разработал множество фундаментальных идей в области функций комплексного переменного. В конце концов это привело к появлению целого раздела математики, известного как комплексный анализ, который выделяется огромным диапазоном применений в самых разнообразных областях науки.
Рис. 6-17. Комплексная плоскость
Паттерны внутри паттернов
Причина, по которой мы затеяли этот экскурс в историю комплексных чисел, заключается в том, что многие фрактальные формы могут быть воспроизведены математически, с помощью итеративных процедур на комплексной плоскости. В конце 70-х годов, опубликовав свою новаторскую книгу, Мандельбро обратил внимание на особый класс математических фракталов, известных как
В основу множества Жулиа положено простое отображение
Z→ Z2 + С,
Где
Чтобы определить тип множества Жулиа для определенной константы с, итерацию необходимо каждый раз выполнить для нескольких тысяч точек, пока не выяснится, продолжают ли значения увеличиваться или остаются конечными. Если конечные точки помечать черным Цветом, а те, что продолжают увеличиваться, — белым, множество Жулиа в конце концов проявится в виде черной фигуры. Вся процедура очень проста, но занимает много времени. Очевидно, необходимо использование высокоскоростного компьютера, чтобы получить точную форму за приемлемое время.
Для каждой константы с можно получить различные множества Жулиа, поэтому число этих множеств неограниченно. Некоторые из них представляют собой отдельные, связанные между собой части; другие распадаются на несколько изолированных частей; а третьи выглядят так, будто они рассыпались на мелкие осколки (рис. 6-18). Все множества отличаются неровными, изрезанными очертаниями, что характерно для фракталов, и большинство из них невозможно описать языком классической геометрии. «Получается невообразимое разнообразие множеств Жулиа, — восхищается французский математик Адриен Дуади. — Одни напоминают плотные облака, другие — тощий куст ежевики, а некоторые похожи на искры, парящие в воздухе после фейерверка. Встречается форма кролика, многие напоминают хвосты морских коньков»34.
Рис. 6-18. Разнообразие множеств Жулиа. Из PeitigenandRichter (1986)