Но основным нашим фоторезистом стали соединения на основе диазосмол. Собственно, диазотипия - светокопирование с использованием солей диазония - было открыто еще в 1923 и с тех пор массово использовалось для копирования чертежей и других изображений (а до того - с 1902 года - для этих же целей использовалась цианотипия - пресловутая "синька", чье название перешло у нас и на диазотипию, хотя цвет чертежей был уже не синим). Эти процессы подходили для светокопирования, но не для фотолитографии, которая требовала плотного покрытия, а не просто покрытия слоем кристалликов - между их гранями все-равно к подложке будут проникать ненужные вещества. Поэтому-то мы и использовали полиграфические методы фотолитографии - там также требовалось сплошное покрытие, которое образовывали полимеризующиеся молекулы какого-нибудь органического вещества.
Как раз диазониевые соли для этого и подходили - они выступали катализатором отверждения разнообразных органических соединений - например, еще в 1931 ее использовали для отверждения слоя животного клея под действием света. Правда, для газет было достаточно разрешения и в две-четыре линии на миллиметр, но с помощью этой же технологии получали и печатные формы для журналов, где требовалось более высокое качество - собственно, после освобождения Минска в начале сорок второго у нас и появились как технологии, так и настоящие специалисты по фотолитографии - минские типографии были оборудованы можно сказать по последнему слову техники. С их-то помощью мы в конце концов и получили на небольших площадях разрешение уже двести линий на миллиметр, то есть пять микрометров - как раз с некоторым запасом для проектных норм в десять микрометров. Дальше пока был затык - там и слишком сильное набухание частей фоторезиста, которые будут смываться - они сдвигали незасвеченные участки, да и других возникающих дефектов хватало, так что работы предстоит еще много - ведь чем толще слой пленки фоторезиста - тем сильнее набухание и деформации, а чем этот слой тоньше - тем вероятнее возникновение проколов и просто дырок, разрывов, когда при сушке слой фоторезиста несколько стягивается, так что может даже порваться.
В плане оптики мы также сделали шаг вперед, позволивший нам перейти к десяти микронам. Так, мы начали получать первые партии синтетического стекла - из кремния, очищенного для микроэлектроники - просто потом окисляли его до оксида кремния, то есть до кварца. Чистейшего - такого не было даже в природе. Сто грамм в сутки, на пару линз - и вот микроэлектронщики получили первую проецирующую установку на топологические нормы в десять микрон. Сама установка была высотой в два метра и засветку приходилось делать пошагово - засветить одну микросхему - и передвигаться к следующей - все для того, чтобы максимально уменьшить аберрации проецируемого изображения, хотя мы и так отлично постарались - помимо линз из чистейшего стекла мы впервые применили мощные монохроматоры - вырезали из спектра излучения паров цезия нужную линию света - четыреста с чем-то нанометров - и ею засвечивали фоторезист. Это хотя и уменьшало энергию засветки, зато избавляло нас от хроматических аберраций - теперь через оптическую систему шла только одна волна, а сама оптическая система была рассчитана именно на нее.
И, несмотря на все эти ухищрения, поначалу выход годных микросхем был равен нулю. Немного поигравшись с параметрами толщины фоторезистов, интенсивности источника света, длительности засветки, с легированием - народ отчаялся получить годные микросхемы и стал варварски выдергивать их из техпроцесса на разных стадиях - изучать, а что там вообще происходит ? Стандартная практика. Проблема была в нечеткости линий, причем иногда что-то все-таки сначала получалось и затем портилось уже на последующих этапах.