Читаем Перелом (СИ) полностью

Ну, если суметь рассмотреть их спектр среди спектров, выдаваемых другими молекулами и их элементами в той же смеси — порой линии были очень близко, чтобы их разглядеть. Например, в алканах элемент — CH3 давал полосы на длинах 3,36-3,39, 3,47-3,50, 6,80-6,97 и 7,22-7,30 микрометров, а — СН2- на 3,40-3,45, 3,49-3,52 и 6,76-6,94. То есть линии спектра этих элементов располагались очень близко, а то и перекрываясь на некоторых диапазонах, так что при недостаточной разрешающей способности спектрометра они все просто сливались в одну линию — и ладно если только между собой, но могли сливаться и с другими структурными элементами.

Чтобы все-таки отделить одну линию от другой, обычно ставили несколько призм — первой раскладывали исходный поток света, а другими дополнительно раскладывали уже отдельные участки этого разложенного спектра. Причем количество таких каскадов в общем случае ограничивалось только силой проходящего излучения — и изначальной, и поглощением в материале призм. Так как решетки практически не поглощали излучение, с этим было проще, и мы ставили несколько решеток и сначала на одной раскладывали весь пучок, а потом на остальных — подпучки, доводя количество каскадов до восьми, но там уже сама конструкция становилась очень сложной — ведь эти пучки света не должны пересечься с конструкциями, на которых будут крепиться решетки, да и виброзащита, компенсация температурного расширения существенно усложнялись.

Но, например, для промышленных применений требовалось отслеживать не все вещества, а только ограниченное количество, поэтому можно было делать спектрометры, рассчитанные на какие-то отдельные участки спектра. Это упрощало конструкцию и вместе с тем сохраняло почти лабораторную точность измерений — разве что требовалась более сильная защита от цеховых условий — и по пыли, и по вибрации, и по дрейфу температуры. Например, применение спектрометров при выплавке металла позволило увеличить выход металла на пять процентов и на столько же сократить расход топлива — и это только за счет более точного измерения доменных газов, еще при ручном управлении. А мы уже отлаживали автоматическую систему, которая анализировала выходящие из жерла газы и на основе этого анализа подправляла дутье — стало больше кислорода — уменьшить, так как наблюдается избыток кислорода и железо начнет снова окисляться и медленнее восстанавливаться, а если кислорода стало меньше — дутье можно и увеличить, активизировав горение топлива и тем самым увеличив интенсивность реакций. Собственно, металлурги поступали так же, только автоматика позволяла более тонко реагировать на изменение доменных газов. Нам это рассказывал один из металлургов, что попали к нам из плена — с началом войны он пошел в военкомат добровольцем, его и взяли, вместо того чтобы вернуть к домне — ну ни о чем не думают с этой мобилизацией — план выполнили — и ладно, а что специалист занимается не своим делом — хоть бы хны. Прямо немцы какие-то. И технологи обещали еще лучшие показатели — и на этой системе, а если увеличим количество фурм для более тонкой подстройки под процесс и количество точек измерения — эффективность одной домны будет еще больше.

Так что ИК-спектрометрия уже выходила за пределы лабораторий в промышленность. Ну, в полулабораторных производствах чистых веществ она тоже уже активно использовалась, но мы начали нарабатывать опыт ее применения и в таких грязных производствах, как черная металлургия. Да и не только. К началу сороковых в мире было получено порядка трехсот ИК-спектров молекул — по существовавшей тогда технологии снятие спектра через призмы было долгим делом — от трех часов до двух суток, в зависимости от наличия оборудования, количества доступных призм, которые требовали бережного обращения — ведь та же соль растворяется в воде, поэтому помещение и прибор требовали очень сухого воздуха. Мы же за один только год получили дополнительно почти тысячу спектров.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже