– Да. Согласно аккреционной модели, средний химический состав Луны должен быть похож на средний химический состав Земли.
– Что значит «средний»? – спросила Галатея.
– После образования Земля расплавилась, и тяжёлые металлы утонули в расплавленной магме, собрались в металлическом ядре планеты. Сверху остались плавать лёгкие каменные континенты, обеднённые железом и другими металлами. Но если снова хорошенько перемешать всю Землю, её средний химический состав должен быть таким же, как у Луны, не испытавшей плавления и разделения металлов и камня.
– Понятно! – кивнула Галатея.
– Преимущество аккреционной модели заключается в том, что она подтвердила свою реалистичность на спутниках Юпитера и Сатурна, которые выросли из аккреционного диска. Правда, диски планет-гигантов были сравнительно маломассивные – тысячные доли от массы планеты, а диск, из которого выросла Луна, гораздо массивнее. Почему? Это и стало проблемой для аккреционной модели.
Но самый серьезный удар по ней нанесли лунные американские экспедиции, которые в начале 1970-х привезли с Луны сотни килограммов образцов лунных камней и песка. Химики проанализировали их и выяснили, что на Луне удивительно мало железа – примерно столько же, сколько в земной коре.
– Но ведь ты сказала, что в земной коре его мало, потому что оно утонуло и собралось в ядре? – напомнил Андрей.
– Верно, но Луна не испытывала такого расплавления. Почему она оказалась обеднена металлом? Аккреционная теория не смогла ответить на этот вопрос, и в 1975 году американские учёные выдвинули новую теорию, которая утверждала, что Луна родилась из кусков земной коры и мантии, выброшенных в космос.
– Сказать-то легко, а сделать трудно! – нравоучительно произнесла Галатея.
– Да, нам трудно вывести в космос даже спутник весом в 10 тонн, а в новой модели для образования Луны на стабильную орбиту вокруг Земли потребовалось бы запустить 70 миллиардов миллиардов тонн камня.
– Ух ты! – не удержался от восклицания Андрей.
– Чтобы совершить такой подвиг, американским учёным пришлось придумать ужасную катастрофу, которая произошла с нашей планетой более 4 миллиардов лет назад. Они предположили, что крупная планета – её назвали Тея – с массой примерно равной массе Марса, налетела на нашу планету по касательной траектории. Врезавшись в край Земли, она отрубила от неё гигантский кусок, который улетел в космос…
– И стал Луной? – не удержалась от вопроса Галатея.
– Пока нет. Проблема в таком способе создания Луны в том, что выброшенные одним ударом куски или навсегда покидают окрестности Земли, или быстро падают назад, на планету. Так и этот гигантский кусок, не удержавшись в космосе, вернулся на Землю и выбил из неё ещё несколько кусков, поменьше. И хотя подавляющее большинство выброшенной массы вновь оказалось на Земле, в результате катастрофы вокруг нашей планеты сформировался маломассивный диск из обломков земной коры. Из этого диска и выросла потом Луна.
– Уф! – озадаченно покачал головой Андрей, следя за удивительными приключениями земных ошмётков.
– Эта модель образования Луны была названа теорией мегаимпакта, или сверхудара. Она в меньшем масштабе повторяла старую теорию Джинса, по которой наша планетная система возникла из струи солнечного вещества, вырвавшейся при столкновении двух звёзд. Модель принципиально базировалась на гигантской катастрофе, потому что куски коры, выбиваемые с поверхности Земли меньшими телами, типа астероидов, не желали выходить на орбиту.
– Меньшими – это какими? – спросил Андрей.
– Размером в тысячи и сотни километров, – пояснила Никки.
– Ничего себе, это же преогромные астероиды!
– Да, и они могли выбить с поверхности Земли множество обломков, но те не задерживались на лунной орбите. Только суперудар тела размером с Марс мог заставить хотя бы малую часть выброшенного вещества удержаться на орбите.
Теория мегаимпакта быстро стала сверхпопулярной, потому что она решала проблему дефицита железа на Луне (её «собрали» из уже обеднённых металлами кусков земных континентов) и проблему её большой массы.
– Действительно, таким топором можно что хочешь отрубить! – воскликнул Андрей.
Но теория мегаимпакта, базирующаяся на исключительно редком соударении двух планет, столкнулась с принципиальной трудностью, связанной с её исключительностью. В конце XX века Луна окончательно потеряла статус исключительного спутника.
В 1978 году возле небольшого Плутона, вращающегося за орбитой Нептуна, открыли спутник Харон, масса которого составляла 12 % от массы самой планеты. Таким образом, Харон обогнал Луну по относительной массе в 10 раз.