Орбиты всех космических аппаратов и искусственных спутников Земли лежат на высотах, как правило, более 180–200 километров: двигаться с космическими скоростями можно только за пределами атмосферы, иначе немыслимо было бы преодолеть сопротивление воздуха. На высоте 30 километров, где плотность воздуха почти в сто раз меньше, чем у самой поверхности Земли, сопротивление небольшому спутнику будет исчисляться десятками тонн, и даже на высоте 100 километров, где сила торможения упадет до килограммов, только за один виток скорость спутника уменьшится примерно на 50 метров в секунду. 180–200 километров — такова минимальная высота орбиты, по которой возможно движение с космическими скоростями. Так получалось из расчетов. Это же подтвердили и наши первые спутники Земли.
Максимальная же орбита в принципе может быть любой, но для пилотируемых кораблей, вращающихся вокруг Земли, не выше 500–600 километров; дальше — радиационные пояса, окружающие Землю и опасные для здоровья космонавта.
Итак, орбита полета будет круговой с высотой 200 километров. При этом спутник, двигаясь по ней со скоростью 7,791 километра в секунду, облетит земной шар за 88 минут 25 секунд. Это время, которое нетрудно подсчитать, и есть период обращения, хорошо знакомый каждому по сообщениям ТАСС о запуске очередного спутника.
Одним из параметров орбиты является наклонение (то есть угол наклона плоскости орбиты к плоскости экватора). Отсчитывается оно всегда от плоскости экватора. Если в полете спутник будет все время лететь над экватором, то его орбита называется экваториальной и имеет наклонение, равное 0 градусов. Орбита, проходящая над полюсами, — полярной, с наклонением 90 градусов.
Взлетев с территории Советского Союза и выйдя на околоземную окружность, спутник вначале достигнет и «коснется» в северном полушарии той параллели, которая соответствует наклонению его орбиты, затем, перейдя через экватор, дойдет до соответствующей параллели в южном полушарии, опять, пересекая экватор, войдет в северное полушарие и т. д.
Все эти данные необходимы проектанту при разработке программы.
Выберем для рассуждений наклонение, равное 65 градусам — именно так запускался «Восток». Время старта зависит от нескольких факторов, однако чтобы не усложнять рассказ, выберем его, исходя только из одного требования. Предположим, что на корабле применена система ориентации продольной его оси по направлению полета. Это необходимо для торможения перед спуском. Ведь тормозной двигатель должен быть направлен своим соплом под точно рассчитанным углом к направлению полета, и корабль перед «финишем» обязан повернуться и занять в пространстве строго определенное положение. Но положение это определят, например, солнечные датчики системы ориентации только в том случае, если в нужный момент само Солнце будет находиться перед кораблем. Датчики должны «увидеть» Солнце при выходе из-за горизонта в строго расчетный момент (плоскость орбиты при этом обязана совпадать с направлением на Солнце). Если полет планируется на строго определенное количество витков, то и Солнце должно оказаться в нужном положении тоже в определенное время. Отсюда, конечно, следует, что и старт корабля должен быть произведен в строго определенный час, минуту и секунду выбранных суток. Только в этом случае, пролетев заданное количество витков, корабль встретит Солнце в нужное время и в нужном месте.
Вот примерно те законы баллистики и небесной механики, которыми мы должны руководствоваться при разработке программы полета.
Теперь снова вернемся к задаче «что после чего включается» на примере только одной из систем — радиотелеметрической, состоящей из передатчика, специального преобразователя, множества чувствительных датчиков, специальных запоминающих устройств.
Телеметрическая система, или, как ее называют, телеметрия, включается еще перед стартом ракеты: помните, в некоторых фильмах о космосе и в книгах упоминается на первый взгляд странная предстартовая команда: «Протяжка». Вот она-то и означает, что включена бортовая телеметрия, а наземные станции должны начать регистрацию параметров.