Читаем Первые три минуты полностью

Итак, вот наш рецепт ранней Вселенной. Возьмите заряд в расчете на фотон равным нулю, на каждый миллиард фотонов добавьте по одному бариону, а лептонное число примите равным некоторой малой величине. Задайте температуру в нужный вам момент времени как отношение современного размера Вселенной к размеру в интересующую вас эпоху, умноженное на 3 К (современная температура реликтового излучения). Хорошенько перемешайте, чтобы микроскопические распределения частиц различных сортов отвечали требованию теплового равновесия. Поместите все это во Вселенную, темп расширения которой определяется силой тяготения этого самого вещества. Если запастись терпением, то через некоторое время из этой мешанины должен получиться наш сегодняшний мир.

<p>5. Первые три минуты</p>

Итак, теперь мы достаточно подкованы, чтобы проследить за ходом космической эволюции в первые три минуты. Тогда события развивались гораздо стремительнее, чем сейчас, поэтому киноаппарат, показывающий кадры через равные промежутки времени, здесь не поможет. Вместо этого я синхронизую наш «фильм» с падающей температурой Вселенной, причем последовательные стоп-кадры по температуре будут различаться примерно в три раза.

К сожалению, у меня нет возможности начать показ с нулевого момента времени и бесконечной температуры. Известно, что, когда температура превысила порог в полторы тысячи миллиардов градусов (1,5 × 1012 К), во Вселенной в больших количествах появилась частица под названием пи-мезон. (Ее масса – около одной седьмой массы нуклона; см. таблицу I на с. 212.) В отличие от электронов, позитронов, мюонов и нейтрино, пи-мезоны очень сильно взаимодействуют с нуклонами и друг с другом. На самом деле как раз за счет обмена пи-мезонами нуклоны и держатся в атомном ядре. Когда появляется много таких сильновзаимодействующих частиц, описать поведение вещества при сверхвысоких температурах становится невероятно сложно. Поэтому, чтобы не вдаваться в хитроумные математические выкладки, в этой главе я начну повествование с первой сотой доли секунды. В этот момент температура составляла всего 100 миллиардов градусов Кельвина, что заведомо ниже пороговых значений для пи-мезонов, мюонов и остальных, более тяжелых частиц. В главе 7 кратко остановлюсь на том, что, по мнению физиков-теоретиков, могло происходить до этого момента.

Имея все это в виду, и начнем просмотр.

СТОП-КАДР № 1. Температура во Вселенной – 100 миллиардов градусов (1011 К). В этот момент космос проще для понимания, чем когда бы то ни было в будущем. Его заполняет однородный бульон из вещества и излучения, а каждая частица сталкивается с другими много-много раз в секунду. То есть, несмотря на стремительное расширение, Вселенная находится в почти идеально равновесном состоянии. Количество различных ингредиентов в ней, таким образом, определяется законами статистической физики и не зависит от того, что происходило до первого стопкадра. Нам достаточно знать, что температура равна 1011 К, а сохраняющиеся величины – заряд, барионное и лептонное число – очень маленькие или равны нулю.

В заметных количествах присутствуют только те частицы, чей температурный порог ниже 1011 К: электрон, позитрон и, конечно, безмассовые частицы, такие как фотон, нейтрино и антинейтрино (снова отсылаем читателя к таблице I на с. 212). Вещество во Вселенной упаковано настолько плотно, что даже нейтрино, которым ничего не стоит пройти сквозь свинцовую заслонку толщиной в несколько световых лет, находятся в тепловом равновесии с электронами, позитронами и фотонами и часто сталкиваются как с ними, так и друг с другом. (В понятие «нейтрино», напомню, я иногда включаю и антинейтрино.)

Упрощает картину и то, что температура 1011 К гораздо выше порога электронов и позитронов. Отсюда заключаем, что эти частицы – наряду с фотонами и нейтрино – ведут себя как излучение. Какова плотность энергии этих разновидностей излучения? Из таблицы I на с. 212 видим: вклад электронов и позитронов, вместе взятых, составляет 7/4 от энергии фотонов. Столько же вносят нейтрино с антинейтрино. Поэтому полная плотность энергии отличается от плотности энергии истинного излучения на коэффициент

Из закона Стефана – Больцмана (см. главу 3) можно вычислить плотность энергии излучения при температуре 1011 К. Она оказывается равной 4,72 × 1044 электронвольт на литр. Значит, полная плотность энергии во Вселенной, нагретой до 1011 К, была в 9/2 раза больше – т. е. 21 × 1044 электронвольт на литр. Это эквивалентно массовой плотности в 3,8 миллиарда килограммов на литр, что в 3,8 миллиарда раз больше, чем плотность воды в земных условиях. (Когда я выражаю энергию в единицах массы, то, конечно, имею в виду ту энергию, которая выделилась бы согласно эйнштейновской формуле E = mc 2 – если бы вся масса перешла в энергию.) Если бы Эверест был сделан из такого плотного вещества, своим гравитационным полем он уничтожил бы Землю.

Перейти на страницу:

Все книги серии Эксклюзивная классика

Кукушата Мидвича
Кукушата Мидвича

Действие романа происходит в маленькой британской деревушке под названием Мидвич. Это был самый обычный поселок, каких сотни и тысячи, там веками не происходило ровным счетом ничего, но однажды все изменилось. После того, как один осенний день странным образом выпал из жизни Мидвича (все находившиеся в деревне и поблизости от нее этот день просто проспали), все женщины, способные иметь детей, оказались беременными. Появившиеся на свет дети поначалу вроде бы ничем не отличались от обычных, кроме золотых глаз, однако вскоре выяснилось, что они, во-первых, развиваются примерно вдвое быстрее, чем положено, а во-вторых, являются очень сильными телепатами и способны в буквальном смысле управлять действиями других людей. Теперь людям надо было выяснить, кто это такие, каковы их цели и что нужно предпринять в связи со всем этим…© Nog

Джон Уиндем

Фантастика / Научная Фантастика / Социально-философская фантастика

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука