Последнее взаимодействует с веществом гораздо слабее, чем электромагнитное и даже чем нейтрино. (Именно по этой причине даже наиболее тщательные попытки зарегистрировать гравитационные волны до сих пор ни к чему не привели, хотя теоретически у нас есть все основания предполагать их существование.) Таким образом, гравитационное излучение вышло из теплового равновесия очень рано – скорее всего, при тех самых 1032 К. После этого его температура падала обратно пропорционально размеру Вселенной. Точно такому же закону подчиняется температура и всех остальных компонент. Правда, аннигиляция кварков с антикварками и лептонов с антилептонами немного подогрела все вещество во Вселенной – за исключением лишь гравитационного излучения. Значит, сегодня космос должен быть заполнен последним, имеющим температуру немного меньшую, чем у нейтрино и фотонов, – возможно, около 1 К. Если бы удалось зарегистрировать этот гравитационный фон напрямую, современная теоретическая физика вступила бы в контакт с самым ранним моментом в истории Вселенной, который был ей когда-либо доступен. К сожалению, даже в самых смелых своих мечтах экпериментаторы не надеются поймать этот 1-градусный гравитационный фон в обозримом будущем.
Воспользовавшись в известной степени умозрительной моделью, мы смогли проследить историю ранней Вселенной до момента бесконечной плотности. Но останавливаться не намерены. Естественно, хочется узнать, что было до этого момента – до того, как космос, расширяясь, начал охлаждаться.
Возможно, состояния с бесконечной плотностью вообще никогда не было. Расширение могло начаться после завершения стадии сжатия, в конце которой плотность значительно выросла, но осталась конечной. В следующей главе я расскажу об этом немного подробнее.
Но, хотя мы и не можем быть ни в чем уверены, логично предположить, что существовало некое
Самый главный урок из размышлений о судьбе очень ранней Вселенной – это логическая структура, которая прослеживается в ее истории. Сейчас в природе наблюдается огромное разнообразие частиц и типов взаимодействий. Но за этим разнообразием мы научились видеть простую калибровочную теорию, объединяющую многочисленные частицы и их взаимодействия. Современная Вселенная настолько холодна, что симметрии между различными частицами и взаимодействиями раскололись, как кристаллы льда. Их не видно в обычных явлениях, и нам приходится искать их в математических уравнениях калибровочных теорий поля. Те тайны, которые мы сегодня раскрываем с помощью математики, в горячей ранней Вселенной лежали на поверхности, простота природы напрямую отражалась в физических явлениях. Но наблюдать за всем этим было некому.
8. Эпилог. Что нас ждет?
Одно можно сказать наверняка: некоторое время Вселенная еще будет расширяться. Что касается ее дальнейшей судьбы, то здесь стандартная теория дает уклончивый ответ: все зависит от плотности – больше она критической или меньше.
Как мы знаем из главы 2, если плотность
С другой стороны, если плотность выше критической, то Вселенная замкнута. Причем в какой-то момент она перестанет расширяться и начнет все быстрее сжиматься. Скажем, если плотность превышает критическую в два раза, а постоянная Хаббла равна принятым сейчас 15 км/с на миллион световых лет, то Вселенной сегодня 10 миллиардов лет. В течение еще 50 миллиардов она будет расширяться, после чего этот процесс сменится сжатием (см. рис. 4 на с. 61). Сжимаясь, Вселенная будет проходить все те же стадии, что и при расширении, но в обратном порядке: через 50 миллиардов лет оно достигнет такого же размера, как сейчас, а еще через 10 миллиардов придет в сингулярное состояние с бесконечной плотностью.