Из этой истории можно извлечь полезный урок. Возможно, распределение вероятностей и не концентрируется вблизи определенного набора констант. Тем не менее не кажется таким уж невероятным то, что какое-то распределение вероятностей для фундаментальных констант природы
Идея антропного принципа применима не к плотности вакуума или космологической постоянной по отдельности, а к
Но самое интересное то, что антропный принцип – если он верен – совсем не обязывает полную плотность вакуума быть равной нулю или меньше критической. Мы знаем (благодаря красным смещениям далеких квазаров), что гравитационное скучивание началось, когда Вселенная была в шесть раз меньше, чем сейчас. Обычное вещество тогда было в 216 (63) раз плотнее, а значит, полная плотность вакуума не оказывала никакого влияния на процесс гравитационного скучивания – если, конечно, она не была хотя бы в 100 раз больше современной плотности обычного вещества. Меньшая плотность вакуума может вступить в противоречие с тем, что мы знаем об образовании галактик на поздних этапах космической эволюции. Однако полная плотность вакуума может в 10, а то и в 20 раз превышать плотность обычного вещества, а галактики будут продолжать спокойно формироваться. Следовательно, в рамках антропного принципа нет оснований полагать, что полная плотность вакуума должна быть в 10 или 20 раз меньше плотности вещества (включая темную материю в галактиках и скоплениях галактик). Может быть, 80 или 90 % от критической плотности составляет вакуум, а остальное приходится на обычную материю (в основном темную) того или иного сорта?
К счастью, этот вопрос можно решить путем астрономических наблюдений. Между плотностью обычного вещества и плотностью, связанной с космологической постоянной и/или с квантовыми флуктуациями вакуума, имеется существенное различие. В процессе расширения Вселенной первая падает, а вторая остается постоянной. Эта разница должна проявляться, когда мы смотрим на очень большие расстояния. Благодаря этому можно решить дилемму, состоит ли критическая плотность из плотности обычного вещества или космологического члена.
В пользу последней возможности говорит следующий факт. Если предположить, что большую часть критической плотности составляет лямбда-член, то разрешается назревающее противоречие между измерениями постоянной Хаббла и возрастов звезд. Во Вселенной, полностью заполненной обычным веществом, их возраст обратно пропорционален постоянной Хаббла. Для значения 80 км/с на мегапарсек он равен 8 миллиардам лет, а для 40 км/с на мегапарсек – 16 миллиардам. Но возраст этих звезд можно оценить и сравнивая их наблюдаемые цвета и светимости в шаровых скоплениях с результатами численного моделирования. Он оказывается где-то между 12 и 18 миллиардами лет. Кроме того, из исследований распространенности различных радиоактивных изотопов следует, что нашей Галактике по крайней мере 10 миллиардов лет. Если постоянная Хаббла лежит ближе к верхнему пределу, который дают наблюдатели, то возникает парадокс: Вселенная моложе своих самых старых звезд. Но если предположить, что основной вклад в плотность дает космологическая постоянная, придем к выводу, что в прошлом плотность Вселенной была меньше. Значит, и расширение шло медленнее. И какое бы значение постоянной Хаббла мы ни взяли, мир окажется старше, причем заведомо старше всех своих объектов.