Мы неоднократно будем встречаться на страницах книги с этими частицами, но в данный момент будет достаточно назвать только те из них, которые присутствовали в ранней Вселенной в наибольшем количестве, отложив более детальные разъяснения до глав III и IV. Один тип частиц, присутствовавших в больших количествах, — это электроны, отрицательно заряженные частицы, которые переносятся электрическим током по проводам и образуют внешние части всех атомов и молекул нашей теперешней Вселенной. Другой тип частиц, имевшихся в изобилии на ранней стадии, — это позитроны, положительно заряженные частицы с массой, в точности равной массе электрона. В теперешней Вселенной позитроны обнаруживаются только в лабораториях физики высоких энергий, в некоторых типах радиоактивного распада, а также в бурных астрономических явлениях вроде космического излучения или сверхновых, но в ранней Вселенной число позитронов почти точно равнялось числу электронов. Вдобавок к электронам и позитронам было примерно одинаковое количество нейтрино различных типов — призрачных частиц, не имеющих вообще ни массы, ни электрического заряда. Наконец, Вселенная была заполнена светом. Его не следует рассматривать отдельно от частиц — квантовая теория говорит нам, что свет состоит из частиц нулевой массы [2]и нулевого электрического заряда, известных под названием фотонов. (Каждый раз, когда атом в нити накала электрической лампочки переходит из состояния большей энергии в состояние меньшей энергии, испускается один фотон. При этом из электрической лампочки вылетает так много фотонов, что они кажутся слившимися вместе в непрерывный поток света, однако фотоэлемент может сосчитать отдельные фотоны, один за другим). Каждый фотон несет определенную порцию энергии и импульса, зависящую от длины волны света. Чтобы описать тот свет, который заполнял раннюю Вселенную, мы можем сказать, что число и средняя энергия фотонов были примерно такими же, как у электронов, позитронов или нейтрино.
Эти частицы — электроны, позитроны, нейтрино, фотоны — непрерывно рождались из чистой энергии и затем весьма быстро вновь аннигилировали. Поэтому число этих частиц не было предопределено заранее, а определялось балансом между процессами рождения и аннигиляции. Из этого баланса можно вывести, что плотность такого космического супа при температуре сотни тысяч миллионов градусов была примерно в четыре тысячи миллионов (4 x 10 9) раз больше, чем у воды. Кроме того, имелась небольшая примесь более тяжелых частиц — протонов и нейтронов, которые в сегодняшнем мире являются составными частями атомных ядер. (Протоны положительно заряжены; нейтроны чуть тяжелее и электрически нейтральны.) Пропорции составляли примерно один протон и один нейтрон на каждую тысячу миллионов электронов, или позитронов, или нейтрино, или фотонов. Это число — тысяча миллионов фотонов на одну ядерную частицу — является критической величиной, которая должна браться из наблюдений в целях построения стандартной модели Вселенной [3]. Открытие космического фона излучения, обсуждаемое в главе III, в действительности представляло собой измерение этого числа.
В процессе развития взрыва температура падала, достигнув через одну десятую секунды тридцати тысяч миллионов (3 x 10 10) градусов Цельсия, через одну секунду — десяти тысяч миллионов градусов и через четырнадцать секунд — трех тысяч миллионов градусов. Это уже было достаточно прохладно для того, чтобы электроны и позитроны начали аннигилировать быстрее, чем они могли рождаться вновь фотонами или нейтрино. Энергия, выделявшаяся при такой аннигиляции вещества, постепенно замедляла скорость охлаждения Вселенной, но температура продолжала падать, достигнув наконец одной тысячи миллионов градусов в конце первых трех минут. Тут уже стало достаточно прохладно для того, чтобы протоны и нейтроны начали образовывать сложные ядра, начиная с ядра тяжелого водорода (дейтерия), состоящего из одного протона и одного нейтрона. Плотность была все еще достаточно велика (чуть меньше плотности воды), так что эти легкие ядра были способны быстро объединяться в более стабильные легкие ядра, такие, как ядра гелия, состоящие из двух протонов и двух нейтронов.