До тех пор, пока сохраняется тепловое равновесие, полное значение величины, называемой «энтропией», остается фиксированным. В достаточном для наших целей приближении энтропия
где
Как раз перед аннигиляцией электронов и позитронов (при температуре около 5 x 10 9К) нейтрино и антинейтрино уже вышли из теплового равновесия с остальным содержимым Вселенной, так что единственными частицами, имевшимися в больших количествах в равновесии, были электрон, позитрон и фотон. Мы видим, что согласно табл. 1 полное эффективное число разновидностей частиц перед аннигиляцией составляло [60]
После аннигиляции электронов и позитронов в четвертом кадре единственными частицами, которые остались в равновесии в большом количестве, были фотоны. Эффективное число разновидностей частиц равнялось поэтому просто
Из закона сохранения энтропии следует, что
Это значит, что тепло, выделившееся при аннигиляции электронов и позитронов, увеличило величину
Перед аннигиляцией электронов и позитронов температура нейтрино
Отсюда заключаем, что после окончания процесса аннигиляции температура фотонов оказалась выше температуры нейтрино в
Нейтрино и антинейтрино, даже хотя они и не находятся в тепловом равновесии, дают важный вклад в космическую плотность энергии. Эффективное число разновидностей нейтрино и антинейтрино равно [61]7/2, или 7/4 от эффективного числа разновидностей фотонов. (Имеются два спиновых состояния фотона.) В то же время четвертая степень температуры нейтрино меньше, чем четвертая степень температуры фотонов, на множитель (4/11) 4/3. Следовательно, отношение плотности энергии нейтрино и антинейтрино к плотности энергии фотонов
Закон Стефана-Больцмана (см. главу III) утверждает, что при температуре фотонов
Следовательно, полная плотность энергии после электрон-позитронной аннигиляции равна
Мы можем перевести это в эквивалентную плотность массы, разделив на квадрат скорости света, и найдем тогда
ДОПОЛНЕНИЯ РЕДАКТОРА РУССКОГО ПЕРЕВОДА
ДОПОЛНЕНИЕ 1. КЛАССИЧЕСКАЯ
НЕРЕЛЯТИВИСТСКАЯ КОСМОЛОГИЯ
В предлагаемой книге Вайнберг для определения закона расширения Вселенной рассматривает шар, выделенный из безграничной среды. Гравитационное поле среды, окружающей шар, при этом не рассматривается: как известно, поле внутри сферически-симметричной оболочки равно нулю. Вывод Вайнберга правилен. Однако у читателя могут возникнуть сомнения, нет ли произвола в операции мысленного выделения шара [62]. Поэтому полезно дать вывод, также основанный на ньютоновой теории тяготения, в котором искусственное выделение шара не используется. Логическая простота при этом покупается ценой некоторого математического усложнения решения. Приводимый ниже вывод оказывается также весьма полезным в теории образования галактик при рассмотрении возмущений идеального решения. Однако в этом дополнении мы не касаемся вопроса о возмущениях.
Итак, для определения закона расширения будем непосредственно рассматривать безграничную среду, ее гравитационный потенциал и движение.
Уравнение тяготения запишем в форме уравнения Пуассона:
где
— потенциал гравитационного поля;
Решение этого уравнения имеет вид:
Мы привыкли к тому, что потенциал равен нулю на бесконечности; для ограниченной совокупности масс это так и есть. В безграничной Вселенной, равномерно заполненной веществом, это не так, однако нет никаких причин отказываться от приведенного решения.
Давление, так же как и плотность, считаем не зависящим от координат. В уравнение движения сплошной среды входит градиент давления, но в данном случае эта величина равна нулю.
Общий вид уравнения движения сплошной среды:
Подставим сюда выражение закона Хаббла
и используем выражение (3) для
Наконец, составим уравнение неразрывности:
Подставив сюда хаббловское выражение скорости (5), найдем, что не зависящая от координат (но зависящая от времени) плотность удовлетворяет уравнению
Система уравнений (6) и (8) полностью эквивалентна тем уравнениям, которые выписаны автором книги в дополнении 2. Для ее решения удобно поделить одно уравнение на другое. Тогда
Это уравнение легко представить в виде линейного уравнения относительно величины