У меня были длительные обсуждения этой проблемы с Голдстоуном в Медисоне летом 1961 г., а затем с Саламом, когда я был его гостем в Империал-колледж в 1961–1962 гг. Вскоре мы втроем смогли показать, что голдстоуновские бозоны действительно должны появляться и в том случае, когда спонтанно нарушаются такие симметрии, как изоспин или странность, и притом их массы остаются равными нулю во всех порядках теории возмущений. Насколько помню, я был столь разочарован этими нулевыми массами, что при написании нашей совместной статьи по этому вопросу [8] я добавил эпиграф к статье, чтобы показать бессмысленность попыток объяснить что-либо в терминах неинвариантного состояния вакуума: это были слова Лира к Корделии: «Из ничего не выйдет ничего. Так объяснись». Конечно, в «Физикл Ревью» защитили пуританскую чистоту физической литературы и не стали печатать цитату. С точки зрения последующего развития идеи о неинвариантном вакууме в теоретической физике это оказалось правильным. На самом деле было исключение из этого правила, указанное вскоре Хиггсом, Кибблом и другими [9]. Они показали, что если нарушенная симметрия является локальной калибровочной симметрией, подобной калибровочной инвариантности в электродинамике, то, хотя голдстоуновские бозоны формально существуют и, в каком-то смысле, реальны, они могут быть устранены калибровочным преобразованием, так что они не появляются в виде настоящих физических частиц. Вместо этого пропавшие голдстоуновские бозоны проявляются как обладающие нулевой спиральностью [67] состояния векторных частиц, приобретающих таким образом массу.
Я думаю, что в то время физики, которые прослышали об этом исключительном случае, рассматривали его как чисто методическую возможность. По-видимому, такое отношение было обусловлено новым достижением в теоретической физике, которое, как казалось, внезапно изменило роль голдстоуновских бозонов, превратив их из нежелательных пришельцев в долгожданных друзей.
В 1964 г. Адлер и Вайсбергер [10] независимо друг от друга вывели правила сумм, которые позволяли выразить отношение
Хотя SU(2) x SU(2) — симметрия спонтанно нарушена, она все еще обладает значительной предсказательной силой, но ее предсказания выражаются в виде приближенных формул, с помощью которых можно вычислять матричные элементы для пионных реакций при низких энергиях. При таком подходе правила сумм Адлера-Вайсбергера получаются при совместном применении предсказываемых длин рассеяния в пион-нуклонных взаимодействиях и хорошо известных правил сумм [13], которые несколькими годами ранее были выведены из дисперсионных соотношений для пион-нуклонного рассеяния.
В этих вычислениях, в действительности, используется не только тот факт, что сильные взаимодействия обладают спонтанно нарушенной приближенной SU(2) x SU(2) — симметрией, но также и то, что токи в этой группе симметрии должны быть отождествлены (с точностью до постоянного множителя) с векторным и аксиально-векторным токами в бета-распаде. (При таком предположении отношение
В 1965–1967 гг. мне доставила большую радость работа по разработке следствий из спонтанного нарушения симметрии для сильных взаимодействий [15].
Именно эта деятельность привела к моей статье 1967 г. об объединении слабых и электромагнитных взаимодействий. Но прежде чем перейти к рассказу о ней, я должен вернуться назад по времени и показать еще одно направление исследований, связанное с проблемой бесконечностей в квантовой теории поля.