Читаем Первые три минуты полностью

В физике XX века принципы симметрии появились в 1905 г., вместе с эйнштейновским пониманием группы инвариантности пространства-времени. После этого прецедента симметрии заняли в умах физиков место априорных принципов, с универсальной справедливостью выражающих простоту природы на самом ее глубоком уровне. Именно поэтому в 30-х годах оказалось до боли трудным воспринять наличие внутренних симметрий, таких, как сохранение изоспина [1], которые не имели никакого отношения к обычному пространству и времени. Эти симметрии отнюдь не были самоочевидны и при этом оказались связанными только с тем, что сейчас называется сильными взаимодействиями. В 50-е годы мы стали свидетелями открытия другой внутренней симметрии — сохранения странности [2], которой не подчиняются слабые взаимодействия. Было обнаружено, что даже одна из, вероятно, наиболее сокровенных симметрий пространства-времени, — четность, — нарушается при слабых взаимодействиях [3]. Вместо движения к единству физикам пришлось учиться тому, что разные взаимодействия, очевидно, управляются совершенно различными симметриями. Состояние дел стало еще более удручающим в начале 60-х годов с признанием роли новой группы симметрии — «восьмеричного пути», которая не является точной симметрией даже в сильных взаимодействиях [4].

Все это — «глобальные» симметрии, в которых преобразования симметрии не зависят от положения в пространстве и времени. Вместе с тем еще в 20-е годы было понято [5], что квантовая электродинамика обладает другой, намного более мощной симметрией — «локальной» симметрией относительно преобразований, при которых поле электрона приобретает некоторую добавку к фазе, меняющуюся свободно от точки к точке в пространстве и времени, а векторный потенциал электромагнитного поля претерпевает соответствующее калибровочное преобразование. Сейчас это назвали бы калибровочной симметрией U(1), потому что простое изменение фазы можно рассматривать как умножение на унитарную матрицу 1 × 1. Расширение на более сложные группы было проведено Янгом и Миллсом [6] в 1954 г. в известной статье, где они показали, как можно построить SU(2) — калибровочную теорию сильных взаимодействий. (Название «SU(2)» означает, что группа преобразований симметрии задается унитарными матрицами 2 × 2, которые являются «специальными», поскольку их детерминанты равняются единице.) Но и здесь опять казалось, что если эта симметрия вообще имеет отношение к действительности, то она должна быть лишь приближенной, поскольку калибровочная инвариантность требует (по крайней мере, на наивном уровне), чтобы векторные бозоны, подобно фотону, были безмассовыми, а представлялось очевидным, что переносчиками сильных взаимодействий должны быть массивные частицы. Оставалась нерешенной и старая проблема: если принципы симметрии служат проявлением простоты природы на ее глубочайшем уровне, то каким образом может возникать такое понятие, как приближенная симметрия? Неужели природа только приближенно проста?

Как-то в 1960 г. или в начале 1961 г. я познакомился с идеей, которая вначале появилась в физике твердого тела, а затем была привнесена в физику частиц теми, кто подобно Гейзенбергу, Намбу и Голдстоуну работал в обеих областях физики. Это была идея о «нарушенной симметрии», заключавшаяся в том, что гамильтониан и коммутационные соотношения квантовой теории могут обладать точной симметрией и тем не менее физические состояния могут не отвечать представлениям этой симметрии. В частности, может оказаться, что симметрия гамильтониана не является симметрией вакуума.

Как иногда случается с теоретиками, я «влюбился» в эту идею. Но, как часто бывает в любовных делах, вначале меня смущали возможные последствия. Я думал (как оказалось потом, неверно), что приближенные симметрии — четность, изоспин, странность и восьмеричный путь — действительно, могли бы быть точными априорными принципами симметрии, а наблюдаемые на опыте нарушения этих симметрий могли бы каким-то образом быть привнесены спонтанным нарушением симметрии. Поэтому на меня сильное впечатление произвел результат, полученный Голдстоуном [7], о том, что (по крайней мере, в одном простейшем случае) спонтанное нарушение непрерывной симметрии, подобной изоспину, обязательно влечет за собой появление безмассовой частицы с нулевым спином, которую сегодня мы назвали бы «голдстоуновским бозоном».

Казалось очевидным, что не может существовать никаких безмассовых частиц такого типа, которые не удалось бы уже обнаружить на опыте.

Перейти на страницу:

Похожие книги

История космического соперничества СССР и США
История космического соперничества СССР и США

Противостояние СССР и США, начавшееся с запуска Советским Союзом первого спутника в 1957 году и постепенно вылившееся в холодную войну, послужило причиной грандиозных свершений в области освоения космоса. Эта книга включает в себя хронику как советских, так и американских космических исследований и достижений, подробное описание полета Найла Армстронга и База Олдрина на Луну, а также множество редких и ранее не опубликованных фотографий. Авторы книги — Вон Хардести, куратор Национального Смитсонианского аэрокосмического музея, и Джин Айсман, известный исследователь и журналист, показывают, каким образом «параллельные исследования» двух стран заставляли их наращивать темпы освоения космоса, как между США и СССР назревал конфликт, в центре которого были Джон Кеннеди и Никита Хрущев. Это история освоения космоса, неразрывно связанная с историей противостояния двух великих держав на Земле.

Вон Хардести , Джин Айсман

Астрономия и Космос / История / Технические науки / Образование и наука
Мир в ореховой скорлупке
Мир в ореховой скорлупке

Один из самых блестящих ученых нашего времени, известный не только смелостью идей, но также ясностью и остроумием их выражения, Хокинг увлекает нас к переднему краю исследований, где правда кажется причудливее вымысла, чтобы объяснить простыми словами принципы, которые управляют Вселенной.Великолепные цветные иллюстрации служат нам вехами в этом странствии по Стране чудес, где частицы, мембраны и струны движутся в одиннадцати измерениях, где черные дыры испаряются, и где космическое семя, из которого выросла наша Вселенная, было крохотным орешком.Книга-журнал состоит из иллюстраций (215), со вставками текста. Поэтому размер ее больше стандартной fb2 книги. Иллюстрации вычищены и подготовлены для устройств с экранами от 6" (800x600) и более, для чтения рекомендуется CoolReader.Просьба НЕ пересжимать иллюстрации, т. к. они уже сжаты по максимуму (где-то Png с 15 цветами и более, где то jpg с прогрессивной палитрой с q. от 50–90). Делать размер иллюстраций меньше не имеет смысла — текст на илл. будет не читаемый, во вторых — именно по этой причине книга переделана с нуля, — в библиотеке была только версия с мелкими илл. плохого качества. Макс. размер картинок: 760(высота) x 570(ширина). Книга распознавалась с ~300mb pdf, часть картинок были заменены на идент. с сети (качество лучше), часть объединены т. к. иногда одна илл. — на двух страницах бум. книги. Также исправлена последовательность илл. в тексте — в рус. оригинале они шли на 2 стр. раньше, здесь илл. идет сразу после ссылки в тексте. Psychedelic

Стивен Уильям Хокинг

Астрономия и Космос