Читаем φ – Число Бога полностью

Сложные явления, которые мы наблюдаем во Вселенной, для Платона не играли существенной роли: он считал, что подлинно фундаментальна именно лежащая в их основе симметрия, а она не меняется. Это представление отнюдь не противоречит современным представлениям о законах природы. Ведь эти законы, в частности, одинаковы во всех уголках Вселенной. По этой причине законы, которые мы выводим из лабораторных экспериментов, можно применить, скажем, при изучении атома водорода и здесь, на Земле, и в галактике, лежащей в миллиардах световых лет от нас. Эта симметрия законов природы проявляется и в том, что величина, которую мы называем импульсом (равная произведению массы тела и его скорости и имеющая направление), сохраняется, то есть имеет одно и то же значение что сегодня, что через год. Подобным же образом, поскольку законы природы с течением времени не меняются, сохраняется и величина, которую мы называем энергией. Энергию невозможно получить из ничего. Вот почему современные теории, основанные на симметриях и на законах сохранения, – законы подлинно платонические.

Вероятно, интерес к многогранникам у пифагорейцев был первоначально вызван наблюдениями над кристаллами пирита в Южной Италии, где находилась пифагорейская школа. Кристаллы пирита, он же серный колчедан, часто имеют в форму додекаэдра. Однако платоновы тела, их красота и математические свойства поражали воображение ученых и спустя много столетий после Платона – и упоминания о них мы встречаем в самых неожиданных местах. Например, в научно-фантастическом романе Сирано де Бержерака (1619–1655) «Иной мир» автор строит летательный аппарат в виде икосаэдра, чтобы сбежать из башни, где он заточен, и приземлиться на Солнце.

Золотое сечение, число φ, играет важнейшую роль в пропорциях и симметрических свойствах некоторых платоновых тел. В частности, додекаэдр с длиной ребра (места, где сходятся две грани) в одну единицу, имеет площадь поверхности в 15 × φ / (√3 – φ) и объем 5 × φ3 / (6–2 × φ). Подобным же образом икосаэдр с длиной ребра в одну единицу имеет объем (5 × φ5)/6.

Из симметрии платоновых тел можно вывести интересные следствия. Например, у куба и октаэдра одинаковое число ребер – 12, – однако число граней и вершин взаимно обратное – у куба шесть граней и восемь вершин, а у октаэдра восемь граней и шесть вершин. То же самое можно сказать о додекаэдре и икосаэдре – у обоих по 30 ребер, но у додекаэдра 12 граней и 20 вершин, а у икосаэдра – наоборот. Это симметрическое сходство платоновых тел позволяет очень интересно вписывать правильный многогранник в его «двойник». Если соединить центры граней куба, получится октаэдр (рис. 21), а если соединить центры граней октаэдра, получится куб. Ту же самую процедуру можно проделать, чтобы вписать икосаэдр в додекаэдр и наоборот – а соотношение длин ребер каждого многогранника (одного в другом) опять же можно выразить при помощи золотого сечения: это φ2/√5. А тетраэдр – сам себе «двойник»: если соединить четыре центра граней тетраэдра, получится другой тетраэдр.

Рис. 21

Хотя в античности были известны не все свойства платоновых тел, ни от Платона, ни от его последователей не скрылась их красота. В некотором смысле даже трудности при построении этих фигур, которые поначалу возникали (пока не были выведены методы, связанные с золотым сечением), можно считать их имманентными свойствами. Ведь последние слова диалога «Гиппий Больший» гласят: «Прекрасное – трудно». Греческий историк Плутарх (ок. 46 – ок. 120) в своем сочинении «Об упадке оракулов» пишет: «Пирамида [тетраэдр], октаэдр, икосаэдр, додекаэдр, все первоначальные фигуры, которые предсказывает Платон, прекрасны благодаря симметрии и равенствам в их отношениях, и ничего лучше и даже ничего сопоставимого с ними Природа не создала».

Рис. 22

Как уже упоминалось, икосаэдр и додекаэдр тесно связаны с золотым сечением, и связей этих несколько. Например, 12 вершин икосаэдра можно объединить в три группы по четыре, и вершины из каждой группы будут лежать на углах золотого прямоугольника, то есть прямоугольника, у которого длины сторон соотносятся как φ. Прямоугольники перпендикулярны друг другу, а единственная их общая точка лежит в геометрическом центре икосаэдра (рис. 22). Подобным же образом центры 12 пятиугольных граней додекаэдра можно объединить в три группы по четыре, и каждая из этих групп также составит золотой прямоугольник. Тесные связи между некоторыми плоскими фигурами, скажем, правильным пятиугольником и пентаграммой, и золотым сечением привели к неизбежному выводу, что интерес греков к золотому сечению начался, вероятно, с попыток построить подобные плоские фигуры и геометрические тела. Подобные математические изыскания велись примерно в начале IV века до н. э. Однако до нас дошли и многочисленные утверждения, что на основе золотого сечения создан и архитектурный проект Парфенона, который был построен и украшен в 447–432 годах до н. э., в правление Перикла. Насколько обоснованны подобные заявления?

<p>Обитель Девы</p>
Перейти на страницу:

Все книги серии Золотой фонд науки

φ – Число Бога
φ – Число Бога

Как только не называли это загадочное число, которое математики обозначают буквой φ: и золотым сечением, и числом Бога, и божественной пропорцией. Оно играет важнейшую роль и в геометрии живой природы, и в творениях человека, его закладывают в основу произведений живописи, скульптуры и архитектуры, мало того – ему посвящают приключенческие романы! Но заслужена ли подобная слава? Что здесь правда, а что не совсем, какова история Золотого сечения в науке и культуре, и чем вызван такой интерес к простому геометрическому соотношению, решил выяснить известный американский астрофизик и популяризатор науки Марио Ливио. Увлекательное расследование привело к неожиданным результатам…Увлекательный сюжет и нетривиальная развязка, убедительная логика и независимость суждений, малоизвестные факты из истории науки и неожиданные сопоставления – вот что делает эту научно-популярную книгу настоящим детективом и несомненным бестселлером.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Вселенная! Курс выживания
Вселенная! Курс выживания

Эта книга – идеальный путеводитель по самым важным и, конечно, самым увлекательным вопросам современной физики: «Возможны ли путешествия во времени?», «Существуют ли параллельные вселенные?», «Если вселенная расширяется, то куда она расширяется?», «Что будет, если, разогнавшись до скорости света, посмотреть на себя в зеркало?», «Зачем нужны коллайдеры частиц, и почему они должны работать постоянно? Разве в них не повторяют без конца одни и те же эксперименты?» Юмор, парадоксальность, увлекательность и доступность изложения ставят эту книгу на одну полку с бестселлерами Я. Перельмана, С. Хокинга, Б. Брайсона и Б. Грина.Настоящий подарок для всех, кого интересует современная наука, – от любознательного старшеклассника до его любимого учителя, от студента-филолога до доктора физико-математических наук.

Джефф Бломквист , Дэйв Голдберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
От Дарвина до Эйнштейна
От Дарвина до Эйнштейна

Эта книга – блестящее подтверждение вечной истины «не ошибается только тот, кто ничего не делает»! Человеку свойственно ошибаться, а великие умы совершают подлинно великие ошибки. Американский астрофизик Марио Ливио решил исследовать заблуждения самых блистательных ученых в истории человечества и разобраться не только в сути этих ляпсусов, но и в том, какие психологические причины за ними стоят, а главное – в том, как они повлияли на дальнейший прогресс человечества. Дарвин, Кельвин, Эйнштейн, Полинг, Хойл – эти имена знакомы нам со школьной скамьи, однако мы и не подозревали, в какие тупики заводили этих гениев ошибочные предположения, спешка или упрямство и какие неожиданные выходы из этих тупиков находила сама жизнь… Читателя ждет увлекательный экскурс в историю и эволюцию науки, который не только расширит кругозор, но и поможет понять, что способность ошибаться – великий дар. Дар, без которого человек не может быть человеком.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

Физика повседневности. От мыльных пузырей до квантовых технологий
Физика повседневности. От мыльных пузырей до квантовых технологий

Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни. В ней не забыты и последние достижения физики: авторы посвящают читателя в тайны квантовой механики и сверхпроводимости, рассказывают о физических основах магнитно-резонансной томографии и о квантовых технологиях. От главы к главе читатель знакомится с неисчислимыми гранями физического мира. Отмеченные Нобелевскими премиями фундаментальные результаты следуют за описаниями, казалось бы, незначительных явлений природы, на которых тем не менее и держится все величественное здание физики.

Андрей Варламов , Аттилио Ригамонти , Жак Виллен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература