Читаем φ – Число Бога полностью

Поэтому получается, что углы среднего треугольника равны 36–72–72, как помечено на рис. 25, а. Если разделить любой из 72-градусных углов при основании треугольника (как на рис. 25, b) биссектрисой, получится маленький треугольник DBC с такими же углами (36–72–72), как и большой треугольник ADB. При помощи самой элементарной геометрии мы можем показать, что по определению Евклида точка С делит сторону АВ в золотом сечении. Более того, отношение AD к DB также равно золотому сечению (краткое доказательство приводится в Приложении 4). Иначе говоря, отношение длины диагонали к длине стороны у правильного пятиугольника равно числу φ. Этот факт показывает, что умение разделить отрезок в золотом сечении дает нам еще и простой способ построить правильный пятиугольник. Необходимость построить правильный пятиугольник и была главной причиной интереса древных греков к золотому сечению. Треугольник, который на рис. 25, а находится в середине – с отношением стороны к основанию, равным φ – известен также как золотой треугольник, а два треугольника по сторонам от него, у которых отношение стороны к основанию равно 1/φ, называют иногда золотыми гномонами. Рис. 26 иллюстрирует уникальное свойство золотых треугольников и золотых гномонов: их можно рассекать на треугольники поменьше, которые также будут представлять собой золотые треугольники и золотые гномоны.

Связь золотого сечения с правильными пятиугольниками, пятисторонняя симметрия и платоновы тела представляют интерес сами по себе, и их, конечно, было бы более чем достаточно, чтобы возбудить любознательность древних греков. Пифагорейцы были прямо-таки очарованы правильным пятиугольником и пентаграммой, а Платон пристально интересовался правильными многогранниками и был убежден, что они служат отражением фундаментальных вселенских сущностей; поэтому поколения математиков, не покладая рук, трудились над формулировкой многочисленных теорем, имеющих отношение к φ. Однако золотое сечение никогда не заняло бы такого видного места и не снискало бы почтения на грани поклонения, если бы не некоторые его алгебраические свойства, поистине уникальные. Но чтобы понять, каковы эти свойства, нам нужно сначала точно вычислить значение φ.

Снова рассмотрим рис. 24; возьмем длину короткой части СВ за единицу, а длину длинной части АС за х единиц. Если отношение х к 1 таково же, как (х +1) – то есть длины отрезка АВ – к х, значит, отрезок разделен в крайнем и среднем отношении. Мы можем легко найти значение x в золотом сечении. По определению крайнего и среднего отношения

х/1 = (х + 1) / x.

Умножим обе части на х; тогда у нас получится х2 = х + 1, или простое квадратное уравнение

х2 – х – 1 = 0.

Если вы вдруг подзабыли, как решать квадратные уравнения, в Приложении 5 приведена краткая памятка. Два корня уравнения золотого сечения равны

х1 = (1 + √5) /2

х2 = (1 – √5) /2.

Положительный корень х1 = (1 + √5)/2 = 1,6180339887… и дает нам значение золотого сечения. Теперь очевидно, что число φ – иррациональное, поскольку представляет собой половину суммы 1 + √5. Тут можно сразу заподозрить, что у этого числа есть интересные свойства; для этого нам понадобится простой карманный калькулятор. Введите число 1,6180339887 и нажмите клавишу [х2]. Ну как, ничего удивительного не замечаете? Теперь снова введите то же самое число и на сей раз нажмите клавишу [1/х]. Поразительно, правда? Квадрат числа 1,6180339887… дает 2,6180339887…, его обратное число («один к х») равно 0,6180339887… – знаки после запятой полностью совпадают! Золотое сечение обладает уникальными свойствами – чтобы получить его квадрат, достаточно прибавить к нему 1, а чтобы получить число, ему обратное, – вычесть 1. Кстати, отрицательный корень уравнения х2 = (1 – √5)/2 равен в точности –1/φ.

Пол С. Брукманс из города Конкорд в штате Калифорния в 1977 году опубликовал в журнале «Fibonacci Quarterly» забавный стишок под названием «Constantly Mean», что можно перевести и как «Постоянное Среднее» (здесь он называет золотое сечение золотым средним):

Перейти на страницу:

Все книги серии Золотой фонд науки

φ – Число Бога
φ – Число Бога

Как только не называли это загадочное число, которое математики обозначают буквой φ: и золотым сечением, и числом Бога, и божественной пропорцией. Оно играет важнейшую роль и в геометрии живой природы, и в творениях человека, его закладывают в основу произведений живописи, скульптуры и архитектуры, мало того – ему посвящают приключенческие романы! Но заслужена ли подобная слава? Что здесь правда, а что не совсем, какова история Золотого сечения в науке и культуре, и чем вызван такой интерес к простому геометрическому соотношению, решил выяснить известный американский астрофизик и популяризатор науки Марио Ливио. Увлекательное расследование привело к неожиданным результатам…Увлекательный сюжет и нетривиальная развязка, убедительная логика и независимость суждений, малоизвестные факты из истории науки и неожиданные сопоставления – вот что делает эту научно-популярную книгу настоящим детективом и несомненным бестселлером.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Вселенная! Курс выживания
Вселенная! Курс выживания

Эта книга – идеальный путеводитель по самым важным и, конечно, самым увлекательным вопросам современной физики: «Возможны ли путешествия во времени?», «Существуют ли параллельные вселенные?», «Если вселенная расширяется, то куда она расширяется?», «Что будет, если, разогнавшись до скорости света, посмотреть на себя в зеркало?», «Зачем нужны коллайдеры частиц, и почему они должны работать постоянно? Разве в них не повторяют без конца одни и те же эксперименты?» Юмор, парадоксальность, увлекательность и доступность изложения ставят эту книгу на одну полку с бестселлерами Я. Перельмана, С. Хокинга, Б. Брайсона и Б. Грина.Настоящий подарок для всех, кого интересует современная наука, – от любознательного старшеклассника до его любимого учителя, от студента-филолога до доктора физико-математических наук.

Джефф Бломквист , Дэйв Голдберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
От Дарвина до Эйнштейна
От Дарвина до Эйнштейна

Эта книга – блестящее подтверждение вечной истины «не ошибается только тот, кто ничего не делает»! Человеку свойственно ошибаться, а великие умы совершают подлинно великие ошибки. Американский астрофизик Марио Ливио решил исследовать заблуждения самых блистательных ученых в истории человечества и разобраться не только в сути этих ляпсусов, но и в том, какие психологические причины за ними стоят, а главное – в том, как они повлияли на дальнейший прогресс человечества. Дарвин, Кельвин, Эйнштейн, Полинг, Хойл – эти имена знакомы нам со школьной скамьи, однако мы и не подозревали, в какие тупики заводили этих гениев ошибочные предположения, спешка или упрямство и какие неожиданные выходы из этих тупиков находила сама жизнь… Читателя ждет увлекательный экскурс в историю и эволюцию науки, который не только расширит кругозор, но и поможет понять, что способность ошибаться – великий дар. Дар, без которого человек не может быть человеком.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

Физика повседневности. От мыльных пузырей до квантовых технологий
Физика повседневности. От мыльных пузырей до квантовых технологий

Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни. В ней не забыты и последние достижения физики: авторы посвящают читателя в тайны квантовой механики и сверхпроводимости, рассказывают о физических основах магнитно-резонансной томографии и о квантовых технологиях. От главы к главе читатель знакомится с неисчислимыми гранями физического мира. Отмеченные Нобелевскими премиями фундаментальные результаты следуют за описаниями, казалось бы, незначительных явлений природы, на которых тем не менее и держится все величественное здание физики.

Андрей Варламов , Аттилио Ригамонти , Жак Виллен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература