Читаем φ – Число Бога полностью

То обстоятельство, что листья растений следуют определенному образцу, первым отметил древнегреческий ученый Феофраст (ок. 372 – ок. 287 гг. до н. э.) в своем труде «История растений»: «У тех, у которых листья плоские, они располагаются через правильные промежутки». Плиний Старший (23–79 гг. н. э.) отметил то же явления в своей масштабной «Естественной истории», где тоже пишет о правильных промежутках между листьями, расположенными на ветке по кругу. До XV века исследования филлотаксиса недалеко отошли от этих первых качественных наблюдений, но затем Леонардо да Винчи (1452–1519) нашел количественные закономерности в расположении листьев, отметив, что листья растут по спирали циклами по 5 (то есть под углом в 2/5 оборота). Связь между филлотаксисом и числами Фибоначчи первым почувствовал – интуитивно – астроном Иоганн Кеплер. Кеплер писал: «По образу и подобию таких саморазвивающихся последовательностей [имеется в виду рекурсивное свойство последовательности Фибоначчи], на мой взгляд, строится и развитие растений, так, например, в цветке проявлен природный символ этого качества – правильный пятиугольник».

Начало серьезному изучению наблюдаемого филлотаксиса положил Шарль Бонне. В своей книге «Исследования применения листьев растений» (Charles Bonnet. Recherches sur lUsage des Feuilles dans les Plantes, 1754) он дает четкое описание филлотаксиса 2/5. Вероятно, Бонне в сотрудничестве с математиком Жаном-Луи Каландрини открыл, что у некоторых растений наблюдаются и правильные спиральные узоры, например, чешуйки на сосновых шишках или на ананасе (теперь эти узоры называются парастихии).

История же подлинно математического филлотаксиса, в противоположность чисто описательному подходу, начинается лишь в XIX веке в работах ботаника Карла Фридриха Шимпера (вышли в свет в 1830 году), его друга Александера Брауна (1835) и кристаллографа Огюста Браве и его брата-ботаника Луи (1837). Эти ученые обнаружили общее правило, согласно которому соотношения, описывающие филлотаксис, можно выразить дробями, состоящими из членов последовательности Фибоначчи (например, 2/5 или 3/8), а также отметили, что в парастихиях сосновых шишек и ананасов также проявляются закономерности, описываемые числами Фибоначчи.

И в самом деле, нет прелестнее иллюстрации филлотаксиса на основе чисел Фибоначчи, чем ананас (рис. 32). Каждая шестиугольная чешуйка на поверхности ананаса входит в три различные спирали. На рисунке хорошо видны один из восьми параллельных рядов, которые полого поднимаются из левого нижнего угла в правый верхний, один из тринадцати параллельных рядов, которые более круто поднимаются из правого нижнего угла в левый верхний, и один из двадцати одного параллельного ряда, которые поднимаются очень круто (тоже из левого нижнего угла в правый верхний). На поверхности у большинства ананасов видны пять, восемь, тринадцать или двадцать одна спираль разной степени крутизны. Все это числа Фибоначчи.

Рис. 32

Рис. 33

Откуда растения знают, что нужно расставлять листья по закономерностям Фибоначчи? Зона роста у растения расположены на верхушке стебля и называется «меристема» – она конической формы и заостряется кверху. Листья, которые отстоят от меристемы дальше всего, то есть самые старые, если смотреть сверху, дальше всего отходят от середины стебля, поскольку и сам стебель там толще. На рис. 33 показан подобный вид на стебель сверху, а листья пронумерованы в порядке появления. Лист номер 0 появился первым и теперь находится в самом низу, дальше всех от меристемы, и отстоит дальше всех от середины стебля. Важную роль такого представления для понимания сущности филлотаксиса первым подчеркнул ботаник А. Г. Черч в своей книге «Связь филлотаксиса с законами механики» (AH. Church. On the Relation of Phyllotaxis to Mechanical Laws, 1904). Если мы представим себе кривую, которая на рис. 33 соединяет листья с 0 по 5, то обнаружим, что листья последовательно вырастают вдоль туго закрученной спирали – ее называют золотой спиралью. Важная характеристика расположения листьев – угол между линиями, соединяющими центр стебля с последовательно вырастающими листьями. Одно из открытий братьев Браве в 1837 году и состояло в том, что новые листья растут примерно под одним и тем же углом по кругу и что этот угол (так называемый угол расхождения) обычно близок к 137,5 градусам. Сейчас я вас изумлю: это значение тоже определяется золотым сечением! Если поделить полный круг, то есть 360 градусов, на φ, получится 222,5 градуса. Поскольку это больше половины круга (180 градусов), лучше измерять этот угол по оставшемуся сегменту круга. То есть нам надо вычесть 222,5 из 360 – и мы получим наблюдаемый угол в 137,5 градусов (иногда его называют золотым углом).

Перейти на страницу:

Все книги серии Золотой фонд науки

φ – Число Бога
φ – Число Бога

Как только не называли это загадочное число, которое математики обозначают буквой φ: и золотым сечением, и числом Бога, и божественной пропорцией. Оно играет важнейшую роль и в геометрии живой природы, и в творениях человека, его закладывают в основу произведений живописи, скульптуры и архитектуры, мало того – ему посвящают приключенческие романы! Но заслужена ли подобная слава? Что здесь правда, а что не совсем, какова история Золотого сечения в науке и культуре, и чем вызван такой интерес к простому геометрическому соотношению, решил выяснить известный американский астрофизик и популяризатор науки Марио Ливио. Увлекательное расследование привело к неожиданным результатам…Увлекательный сюжет и нетривиальная развязка, убедительная логика и независимость суждений, малоизвестные факты из истории науки и неожиданные сопоставления – вот что делает эту научно-популярную книгу настоящим детективом и несомненным бестселлером.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Вселенная! Курс выживания
Вселенная! Курс выживания

Эта книга – идеальный путеводитель по самым важным и, конечно, самым увлекательным вопросам современной физики: «Возможны ли путешествия во времени?», «Существуют ли параллельные вселенные?», «Если вселенная расширяется, то куда она расширяется?», «Что будет, если, разогнавшись до скорости света, посмотреть на себя в зеркало?», «Зачем нужны коллайдеры частиц, и почему они должны работать постоянно? Разве в них не повторяют без конца одни и те же эксперименты?» Юмор, парадоксальность, увлекательность и доступность изложения ставят эту книгу на одну полку с бестселлерами Я. Перельмана, С. Хокинга, Б. Брайсона и Б. Грина.Настоящий подарок для всех, кого интересует современная наука, – от любознательного старшеклассника до его любимого учителя, от студента-филолога до доктора физико-математических наук.

Джефф Бломквист , Дэйв Голдберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
От Дарвина до Эйнштейна
От Дарвина до Эйнштейна

Эта книга – блестящее подтверждение вечной истины «не ошибается только тот, кто ничего не делает»! Человеку свойственно ошибаться, а великие умы совершают подлинно великие ошибки. Американский астрофизик Марио Ливио решил исследовать заблуждения самых блистательных ученых в истории человечества и разобраться не только в сути этих ляпсусов, но и в том, какие психологические причины за ними стоят, а главное – в том, как они повлияли на дальнейший прогресс человечества. Дарвин, Кельвин, Эйнштейн, Полинг, Хойл – эти имена знакомы нам со школьной скамьи, однако мы и не подозревали, в какие тупики заводили этих гениев ошибочные предположения, спешка или упрямство и какие неожиданные выходы из этих тупиков находила сама жизнь… Читателя ждет увлекательный экскурс в историю и эволюцию науки, который не только расширит кругозор, но и поможет понять, что способность ошибаться – великий дар. Дар, без которого человек не может быть человеком.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

Физика повседневности. От мыльных пузырей до квантовых технологий
Физика повседневности. От мыльных пузырей до квантовых технологий

Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни. В ней не забыты и последние достижения физики: авторы посвящают читателя в тайны квантовой механики и сверхпроводимости, рассказывают о физических основах магнитно-резонансной томографии и о квантовых технологиях. От главы к главе читатель знакомится с неисчислимыми гранями физического мира. Отмеченные Нобелевскими премиями фундаментальные результаты следуют за описаниями, казалось бы, незначительных явлений природы, на которых тем не менее и держится все величественное здание физики.

Андрей Варламов , Аттилио Ригамонти , Жак Виллен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература