При обсуждении термодинамики часто возникает широко распространенное ошибочное представление — мнимый парадокс, связанный с тем, как вообще могут образоваться хоть какие-то сложные структуры, когда закон требует, чтобы энтропия возрастала всегда. Ведь энтропия — это все-таки мера беспорядка системы. Если же сложные системы являются высоко упорядоченными, как они вообще могут возникнуть, не нарушая закона об увеличении энтропии? Этот мнимый парадокс решается легко: увеличиваться должна общая энтропия системы, а энтропия одной ее части может уменьшаться, вследствие чего одна ее часть может стать высоко упорядоченной. Но если одна часть системы становится высоко упорядоченной и теряет энтропию, система в целом должна заплатить за это, в целях компенсации увеличив свою энтропию в какой-то другой части.
В контексте современной космологии температура Вселенной постоянно изменяется, в силу чего существенно варьируется и ответ на вопрос о тепловой смерти. Непрерывно расширяющаяся Вселенная никогда не достигает истинного термодинамического равновесия, т. к. она никогда не приобретает постоянной температуры. Из-за расширения фоновая температура Вселенной продолжает падать. Таким образом, Вселенная явно избегает классической тепловой смерти. Однако расширяющаяся Вселенная, в принципе, может стать чисто адиабатической, а это означает, что энтропия данной области Вселенной остается постоянной. В этом случае Вселенная все равно имеет все шансы стать скучным и мертвым местом, лишенным всяческой способности к выполнению физической работы. Последнюю возможность мы называем
Механизмы образования энергии и энтропии, доступные Вселенной, зависят от вида долгосрочной эволюции. В случае замкнутой Вселенной она, в конечном итоге, пережила бы повторный коллапс и закончила свой жизненный путь в Большом сжатии, поэтому вопрос о долгосрочном образовании энтропии даже бы не возник. Интересные физические процессы продолжались бы во Вселенной до самого последнего мгновения Большого сжатия. Некоторая доля иронии присутствует в терминологии этого повествования: замкнутая Вселенная может избежать оскорбительной тепловой смерти даже тогда, когда ее сложные структуры испаряются под действием сильного лучистого тепла, образующегося в результате катастрофического коллапса.
В случае плоской Вселенной, которая замедляется, продолжая расширяться, на космологическом горизонте появляются и становятся связанными действием гравитации космические структуры постоянно увеличивающегося размера и массы. Поскольку расширение Вселенной замедляется, гравитация, по мере старения Вселенной, получает шанс стягивать материал все с больших и больших расстояний. В плоской Вселенной космические структуры гигантских размеров могут образовываться даже в эпоху вечной тьмы. Конечно же, эпоха вечной тьмы не обязательно абсолютно темна. Некоторые из этих огромных космических структур, в принципе, могут коллапсировать, образуя черные дыры, а следовательно, предыдущая эпоха черных дыр в действительности может вообще не закончиться. Может случиться и так, хотя гарантировать этого мы не можем, что черные дыры будут образовываться быстрее, чем испаряться. В этом случае Вселенная могла бы продолжить поддерживать различные процессы, используя энергию, образующуюся в результате испарения Хокинга этих чудовищных черных дыр. Таким образом, Вселенная, по крайне мере в принципе, может избежать космологической тепловой смерти, пока остается почти плоской. В этом случае война между гравитацией и термодинамикой переходит в патовую ситуацию. Гравитация непрерывно создает все более крупные гравитационно связанные структуры — черные дыры — и одерживает временную победу. Однако каждой отдельной структуре суждено испариться, что приведет к окончательной победе термодинамики и производству энтропии.
С другой стороны, если Вселенная открыта, скорость ее расширения достигает постоянного значения, и гравитация явно проигрывает свое сражение с этим расширением: она уже не может конкурировать с ним. Образование космических структур прекращается на каком-то определенном масштабе, а для продолжения образования черных дыр или любых космических структур возникают серьезные препятствия. Для этого случая вопросы долгосрочного производства энтропии и космологической тепловой смерти Вселенной по-прежнему открыты. И хотя эти перспективы могут показаться довольно унылыми, во Вселенной по-прежнему остается много захватывающих новых возможностей.
Жизнь и смерть позитрония