Читаем Пять возрастов Вселенной полностью

Если такое взаимодействие произойдет в недрах белого карлика, частица темной материи может остаться в гравитационной связи со звездой. По прошествии длительного времени популяция таких частиц внутри звездного объекта постепенно увеличивается. Время, необходимое для того, чтобы темная материя была захвачена в ходе именно такого процесса, много длиннее водородной части жизни звезд, которые почти все это время ведут жизнь звездных остатков. По мере увеличения в звездном ядре концентрации частиц темной материи возрастает вероятность аннигиляции этих частиц. В конце концов, звезда достигает устойчивого состояния, в котором аннигиляция в звездном остатке происходит с той же скоростью, с которой частицы захватываются из галактического гало.

Процесс захвата и аннигиляции темной материи служит жизненно важным источником энергии для белых карликов будущего. Эти звездные объекты являются остатками звезд, погибших после завершения реакций термоядерного синтеза в их недрах. В отсутствие дополнительного источника энергии белые карлики становились бы более холодными и тусклыми, пока их температура не сравнялась бы с фоновой температурой Вселенной. Однако благодаря энергии, которую они извлекают из аннигиляции темной материи, белые карлики могут излучать энергию на протяжении очень долгого времени. Полная мощность излучения одного белого карлика, обусловленная этим процессом аннигиляции, составляет приблизительно один квадрильон (1015) ватт. И хотя эта незначительная мощность примерно в сто миллиардов (1011) раз меньше мощности излучения Солнца, именно этот механизм производства энергии будет править Вселенной в будущем. Такая выработка энергии может продолжаться, пока галактическое гало остается целым — примерно на протяжении двадцати космологических декад 1020 лет) или в десять миллиардов раз дольше того периода, на протяжении которого Солнце будет сжигать водород.

Частицы темной материи, захваченные белыми карликами, в конечном итоге, аннигилируют в излучение, которое, в конце концов, начинает преобладать в фоновом поле излучения Вселенной. Однако, прежде чем покинуть звезду, это излучение переходит в диапазон более длинных волн, а значит, и более низких средних значений энергии. Фотоны покидают поверхность звезды, имея характеристическую длину волны около пятидесяти микрон (одна двадцатая миллиметра) — значение, в сто раз превышающее длину волны света, испускаемого Солнцем. Это излучение невидимо для человеческого глаза, но современная аппаратура без особого труда улавливает эти инфракрасные фотоны. Температура поверхности звезды невысока — всего 63 градуса Кельвина — чуть ниже температуры жидкого азота.

В эту эпоху будущей истории Вселенной галактики будут выглядеть совсем не так, как сегодня. Типичная галактика будущего содержит миллиарды звездных остатков, каждый из которых излучает энергию вследствие процессов захвата и аннигиляции темной материи. При этом полная мощность излучения целой галактики таких звездных остатков сравнима с мощностью излучения одного нашего Солнца. Среди этих тлеющих остатков разбросано порядка сотни более традиционных звезд, образовавшихся в результате столкновений коричневых карликов. И хотя, по современным меркам, эти маленькие звезды светят довольно тускло, в непроглядной тьме будущего они будут истинными маяками. Совокупная мощность излучения, вырабатываемого этими немногочисленными настоящими звездами, затмит миллиарды белых карликов.

Жизнь в атмосфере белого карлика

Несмотря на то, что известные нам формы жизни вполне могут оказаться под угрозой гибели, занятная возможность для жизни в будущем существует в атмосферах старых белых карликов. Не будем забывать, что любое обсуждение будущих форм жизни непременно уводит нас в область предположений. Однако следующая цепочка суждений не только вызывает определенный интерес, но и ясно описывает физические условия, которые будут существовать внутри белых карликов в далеком будущем.

После смерти исходной звезды белый карлик быстро остывает, пока его главным источником энергии не станет захват и последующая аннигиляция частиц темной материи. Как только это произойдет, белый карлик переходит в более или менее устойчивое состояние, в котором он будет находиться до тех пор, пока не закончится вся темная материя, имеющаяся в галактическом гало, или пока сама звезда не будет исторгнута из галактики в процессе ее динамической релаксации. В любом случае типичные белые карлики имеют около двадцати космологических декад (1020 лет) на то, чтобы в пределах их атмосферы развилась жизнь. Этот огромный временной промежуток в сто миллиардов раз превышает время, которое потребовалось для развития жизни на Земле. При наличии столь долгого времени возможность биологической эволюции какого-либо типа становится весьма правдоподобной, а возрастание сложности, — быть может, даже вероятным.

Перейти на страницу:

Похожие книги

Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы
Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы

Как зародилась и по каким законам развивалась жизнь на нашей планете? Что привело к формированию многоклеточных организмов? Как возникают и чем обусловлены мутации, приводящие к изменениям форм жизни? Социологические исследования показывают, что в поисках ответов на эти краеугольные вопросы люди сегодня все реже обращаются к данным науки, предпочитая довольствоваться поверхностными и зачастую неверными объяснениями, которые предлагают телевидение и желтая пресса. Книга доктора биологических наук, известного палеонтолога и популяризатора науки Александра Маркова — попытка преодолеть барьер взаимного непонимания между серьезными исследователями и широким читателем. «Рождение сложности» — это одновременно захватывающий рассказ о том, что происходит сегодня на переднем крае биологической науки, и в то же время — серьезная попытка обобщить и систематизировать знания, накопленные человечеством в этой области. Увлекательная и популярная книга Александра Маркова в то же время содержит сведения, которые могут заинтересовать не только широкого читателя, но и специалистов.

Александр Владимирович Марков

Научная литература
Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература