Читаем Пятое измерение. Исследование природы времени полностью

Физиков удивила странная двойственность света, но настоящее потрясение они испытали, когда выяснилось, что электрон, всегда считавшийся твердой частицей, тоже ведет себя как волна. В экспериментах пропущенный через две щели пучок электронов рисовал не две вертикальных полосы, что логично было бы для частиц, а сразу группу полос, что было типичной картиной при интерференции волн. Даже когда запускали электроны по одному, картина не менялась – словно один электрон проходил через две щели сразу. Мало того, оказалось, что электроны способны пропадать и вновь появляться в другом месте, что было совершенно невозможно представить! Если электрон обладает волновыми свойствами, тогда что возмущает среду, в которой существует эта волна? Что колеблется? А если электрон – частица, то как он может в одно и то же время находиться в двух местах?

Ответ дал Макс Борн в 1926 году, заявив, что колеблется вероятность нахождения электрона в данной точке. Невозможно точно и наверняка определить, где находится электрон. Единственное, что мы можем знать, – это вероятность его нахождения. Идею закрепил Вернер Гейзенберг, сформулировав свой знаменитый принцип неопределенности, легший в основу квантовой теории. Принцип гласит, что одновременно знать точно импульс (произведение массы на скорость) и местоположение электрона невозможно. Математически он выражается соотношением неопределенности по формуле, где погрешность измерения координаты, умноженная на погрешность измерения импульса, всегда должна быть больше или равна постоянной Планка. Это накладывает ограничение: если мы точно определяем месторасположение частицы, то не можем точно знать ее скорость. И наоборот: определив скорость, мы получаем неопределенность с координатами.

Принцип неопределенности аналогичным образом связывает не только координаты и скорость, но и другие пары взаимно увязанных характеристик частиц. Так, невозможно безошибочно измерить энергию квантовой системы и определить момент времени, в который она этой энергией обладает. Неопределенность является следствием корпускулярно-волнового дуализма. Элементарная частица – это частица, но вероятность ее нахождения в любой заданной точке задается волновой функцией. Пока мы измеряем одну величину, другая в это время успевает как бы умчаться от нас вдаль, стать размытой, неопределенной, выдавая большие погрешности в расчетах.

В 1927 году Нильс Бор и Вернер Гейзенберг сформулировали Копенгагенскую интерпретацию, согласно которой квантовая механика описывает не микрообъекты сами по себе, а их свойства, проявляющиеся на макроуровне. Макроуровень, или окружающий реальный мир, создается классическими измерительными приборами в процессе акта наблюдения. Именно акт измерения вызывает мгновенное схлопывание, «коллапс волновой функции».

Копенгагенскую интерпретацию сами физики часто сравнивают с философией епископа Беркли [1], который задавал вопрос: если в лесу падает дерево и вокруг нет никого, кто мог бы это услышать, то производит ли его падение звук? Копенгагенская интерпретация квантовой теории не отвечает на этот вопрос однозначным «да» или однозначным «нет». Ее ответ куда более неприятен, чем сам вопрос: если рядом с деревом никого нет, то это дерево существует как сумма множества различных состояний. Оно может не только расти или падать, но и существовать, например, в виде только что проклюнувшегося ростка, в виде обугленного под ударом молнии столба, в виде поленницы дров или листа фанеры и т.д. Только когда вы смотрите на дерево, его волновая функция чудесным образом схлопывается, превращаясь в конкретный объект.

Твердыни, которые еще совсем недавно казались незыблемыми, прямо на глазах превращались в зыбучие пески. Такое понятное и вполне определенное будущее предсказать уже было нельзя – можно говорить только о вероятности того или иного течения событий. На этом поле вероятностей возникал пусть небольшой, но все же шанс для невероятного – какой-нибудь немыслимой чертовщины, противоречащей здравому смыслу. Квантовая «ересь» взорвала мир физики и расколола его на два лагеря. Вместе с ним вдребезги рушилась вообще вся прежняя мировоззренческая вселенная, требуя философского переосмысления физической реальности. Новый фундаментальный физический принцип, принцип неопределенности, разрушал фундамент детерминизма. Больше не существует ни однозначной определенности в природе, ни высшего промысла – миром правит случайность.

Перейти на страницу:

Похожие книги

Программирование. Принципы и практика использования C++ Исправленное издание
Программирование. Принципы и практика использования C++ Исправленное издание

Специальное издание самой читаемой и содержащей наиболее достоверные сведения книги по C++. Книга написана Бьярне Страуструпом — автором языка программирования C++ — и является каноническим изложением возможностей этого языка. Помимо подробного описания собственно языка, на страницах книги вы найдете доказавшие свою эффективность подходы к решению разнообразных задач проектирования и программирования. Многочисленные примеры демонстрируют как хороший стиль программирования на С-совместимом ядре C++, так и современный -ориентированный подход к созданию программных продуктов. Третье издание бестселлера было существенно переработано автором. Результатом этой переработки стала большая доступность книги для новичков. В то же время, текст обогатился сведениями и методиками программирования, которые могут оказаться полезными даже для многоопытных специалистов по C++. Не обойдены вниманием и нововведения языка: стандартная библиотека шаблонов (STL), пространства имен (namespaces), механизм идентификации типов во время выполнения (RTTI), явные приведения типов (cast-операторы) и другие. Настоящее специальное издание отличается от третьего добавлением двух новых приложений (посвященных локализации и безопасной обработке исключений средствами стандартной библиотеки), довольно многочисленными уточнениями в остальном тексте, а также исправлением множества опечаток. Книга адресована программистам, использующим в своей повседневной работе C++. Она также будет полезна преподавателям, студентам и всем, кто хочет ознакомиться с описанием языка «из первых рук».

Бьерн Страуструп , Бьёрн Страуструп , Валерий Федорович Альмухаметов , Ирина Сергеевна Козлова

Программирование, программы, базы данных / Базы данных / Программирование / Учебная и научная литература / Образование и наука / Книги по IT
Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность
Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность

Вы с содроганием вспоминаете школьные уроки математики? Это нормально, ведь у вас не преподавал Бен Орлин, автор этой книги. Впрочем, и он не сразу додумался объяснять ученикам, что вообще-то математика лежит в основе всего на свете: от лотереи до «Звездных войн», от рецептуры шоколадных пирогов до выборов. И что тот, кто овладел основами точной науки, получает возможность разобраться в природе и устройстве окружающих нас вещей и явлений.Орлин выступает не только как педагог, но и как художник-иллюстратор: его смешные человечки и закорючки покорили тысячи школьников, покорят и вас. Изящные каламбуры и забавные ассоциации, игры разума и цифровые загадки (к каждой из которых вы получите элегантную и ироничную разгадку) и, конечно, знаменитые фирменные рисунки (которые, вопреки заглавию, не такие уж дурацкие) позволяют Орлину легко и остроумно доносить самые сложные и глубокие математические идеи и убеждают в том, что даже математика может быть страшно интересной.

Бен Орлин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Учебная и научная литература / Образование и наука