Читаем Пятьсот двадцать головоломок полностью

409. Решение ясно из рисунка.

410. Фразу HERE LIES JOHN RENIE можно прочитать 45 760 способами (или, если разрешается перемещаться от одной буквы к следующей и по диагонали, 91 520 способами), поскольку, добравшись до углового I, мы обязаны сместиться назад по диагонали к ближайшему Е. За недостатком места здесь не приводятся детали решения. Единственная дополнительная информация о камне заключается в окончании фразы: «...который умер 31 мая 1832 г. в возрасте 32 лет».

411. На рисунке показан путь, удовлетворяющий всем заданным условиям.

412. Наикратчайший путь в ABCHCDEIEFGBHDIHGIFAG. Таким образом, инспектор проделает путь в 211 км, проехав по двум коротким дорогам CHи EIдважды.

413. Существует 2501 маршрут от Bдо D, а именно:

КоличествоЧислоЧисло
участковмаршрутоввариаций
1122
2199
321224
451890
5472288
61436504
822721584
2501

Достаточно рассмотреть маршруты от Bдо D. Маршрут, состоящий из 1 участка, ведет прямо в D. Маршрут из 2 участков есть CD. Маршрутами из 3 участков будут CBDи DCD. Пятью маршрутами из 4 участков являются DBCD, DCBD, CBCD, CDCDи CDBD. У каждого из этих маршрутов есть вариации, связанные с выбором конкретных участков, и число таких вариаций одинаково для любого маршрута, содержащего данное количество участков. Маршрутов с семью участками не существует.

414. Число различных путей равно 264. Эта головоломка довольно трудна, но недостаток места не позволяет мне показать наилучший метод подсчета всех маршрутов.

415. Существует 60 маршрутов, следуя по которым миссис Симпер могла бы посетить каждый город по одному и только по одному разу, закончив путь в H, если считать различными маршруты, отличающиеся только направлением. Однако если леди должна избежать тоннелей между Nи O, а также между Sи R, то можно обнаружить, что число различных маршрутов сокращается до 8.

Если это заинтересует читателя, то он может попытаться самостоятельно определить все 8 маршрутов. Поступив таким образом, он обнаружит, что маршрутом, удовлетворяющим всем условиям, то есть не включающим в себя два тоннеля и задерживающим визит в Dкак можно дольше, окажется маршрут HISTLKBCMNU QRGFPODEAH. Он, несомненно, и будет наилучшим маршрутом.

416. На рисунке показан маршрут длиной 76 км, состоящий из 16 прямолинейных участков и не охватывающий только 3 города. Эта головоломка не простая, ее решение можно найти только после большого числа проб и ошибок.

[Милли улучшил решение, найдя 76-километровый путь, состоящий из 16 отрезков и не захватывающий только одингород. По-видимому, это наилучшее возможное решение. Читатель может попытаться его найти. — М. Г.]

417. На рисунке, где для большей ясности опущены неиспользованные дороги, показаны маршруты всех 5 автомобилей. Все маршруты не имеют общих участков и не пересекаются. Хотя точного правила для решения головоломок такого рода указать нельзя, тем не менее, внимательно подумав, мы обычно можем справиться со встретившимися здесь трудностями. Например, уже было показано, что если соединить Aс Aпо вертикали, то C, Dи Eокажутся отрезанными друг от друга. Вскоре выясняется, что путь из Aдолжен обойти слева верхнее D, а затем пройти справа от C. Таким образом, становится очевидным путь из Dв Dи из Bв B. Остальное закончить уже легко.

418. При любом способе первой буквой должна быть M, а поскольку у нас всего четыре буквы M, то мы можем начинать только из четырех точек. Можно показать, что при фиксированном начальном Mсуществует 20 различных способов; следовательно, всего имеется 80 способов.

419. Эту головоломку можно решить с помощью поразительно малого числа росчерков, а именно 14, начиная из Aи заканчивая в Z. На рисунке, помещенном слева, сознательно оставлены пробелы, чтобы сделать яснее путь карандаша.

420. Нарисовать змею менее чем 13 линиями невозможно. Поэтому необходимо найти самую длинную из этих линий. На нашем рисунке мы начинаем в A, а кончаем в Bили наоборот. Пунктиром обозначены пропущенные линии. Чтобы найти решение, требуется немного подумать. Так, непрерывная линия из Dв Cдлиннее пунктирной, следовательно, мы выбираем первую. Точно так же мы увеличим длину линии, если нарисуем язык вместо рта, но при этом кончик языка, изображенный в виде отрезка прямой, мы обязаны отбросить.

421. Существуют разные варианты решения; один из них показан на рисунке. Однако совершенно необходимо, чтобы вы начинали в A, а кончали в Bили наоборот. В любой другой точке сходятся две или четыре (четное число) линии, а в Aи B — три (нечетное число). Следовательно, начало и конец пути должны совпадать с Aи B.

422. Головоломку решить можно, но при этом необходимо начинать рисунок в точке A, а кончать его в Bили наоборот. В противном случае начертить требуемую фигуру одной непрерывной линией нельзя.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика