117. Существуют четыре решения: 2 438 195 760, 3 785 942 160, 4 753 869 120, 4 876 391 520. Последняя цифра обязана быть нулем. При любом размещении цифр с четной цифрой перед нулем число делится на 2, 3, 4, 5, 6, 9, 10, 12, 15 и 18. Остается рассмотреть только 7, 11, 13, 16 и 17. (Делимость на 8 и 14 следует из делимости на 16 и 7.) Для делимости на 11 цифры, стоящие на четных местах, должны в сумме давать 28, а на нечетных — 17, или наоборот. Для того чтобы наше число делилось на 7 × 11 × 13 = 1001, число, образованное первой тройкой цифр, и число, образованное последней тройкой (мы отбрасываем нуль), в сумме должны давать число, образованное средней тройкой цифр. (Отметим, что третий из приведенных случаев есть на самом деле: 474 --1386 - 912, где 1 перенесена вперед и прибавлена к 4.) Однако самое лучшее, что мы можем сделать, это умножить наименьшее общее кратное (н. о. к.) наших делителей (12 252 240) на самое маленькое число (82), при котором произведение (1 004 683 680) будет содержать 10 цифр, а затем прибавлять н. о. к. до тех пор, пока все цифры не станут различными.
Умножив н. о. к. на 199, получим первое решение, умножив на 309 — второе, на 388 — третье и на 398 — четвертое решение. Выкладки можно существенно сократить, перескакивая через группы чисел, в которых цифры очевидным образом повторяются. Все ответы можно получить с помощью арифмометра за каких-нибудь двадцать минут.
118. Наименьшим возможным числом будет 3 333 377 733. Оно делится на 3 и на 7, и тем же свойством обладает сумма его цифр (42). Число должно содержать по крайней мере 3 семерки и 7 троек, причем семерки следует перенести как можно дальше вправо.
119. Искомыми числами являются 5832, 17 576 и 19 683. Сумма цифр каждого из них, равная соответственно 18, 26 и 27, совпадает с соответствующим кубическим корнем.
120. Наименьшее число, удовлетворяющее всем условиям, равно 35 641 667 749. Другие числа получаются прибавлением к данному любого целого, кратного числу 46 895 573 610.
121. Искомыми числами будут 162, 243, 324, 392, 405, 512, 605, 648, 810 и 972. Этим, по-видимому, исчерпываются все возможные случаи.
122. Существуют три решения: 56 169 (2372), где 56 + 69 = 125 (53); 63 001 (2512), где 63 + 01 = 64 (43) и 23 104 (1522), где 23 + 04 = 27 (33).
123. Произведение чисел 989 010 989 и 123 456 789 равно 122 100 120 987 654 321, что и требовалось найти.
124. Ответ профессора гласил:
297 | 564 | 831 |
291 | 564 | 837 |
237 | 564 | 891 |
231 | 564 | 897 |
где разность прогрессии равна соответственно 267, 273, 327 и 333. Он указал на то, что для каждой из шести перестановок средних трех цифр можно найти соответствующее решение.
[В. Тебо в книге «Parmi les Nombres Curieux» показал, что существует 760 таких прогрессий. Кроме 456 и его перестановок, среднее число может быть любой перестановкой следующих групп из трех цифр: 258, 267, 348 и 357. —
125. Если вы умножите 6666 на сумму четырех заданных цифр, то получите правильный ответ. Поскольку 1, 2, 3, 4 в сумме дают 10, то, умножая 6666 на 10, получаем ответ 66 660. Если мы будем искать сумму всех выборок по четыре различные цифры, то получим 16 798 320, или 6666 × 2520.
126. Эту задачу можно решить несколькими способами. Ответ, разумеется, одинаковый во всех случаях, равен 201 599 999 798 400. Сумма девяти цифр равна 45 и
Записав далее
девять раз, сложив и приписав в конце 00, получим ответ.
127. С помощью четырех перестановок
128. Наименьший квадрат равен 1 026 753 849 (32
129. Задача имеет только два решения: числа 567 (5672 = 321
130. Суммы цифр данных шести чисел соответственно равны
46 | 31 | 42 | 34 | 25 | 34 |
1 | 4 | 6 | 7 | 7 | 7 |
Складывая цифры сумм (если потребуется — не один, а несколько раз), мы получим в результате однозначные числа, стоящие во втором ряду. Назовем эти однозначные числа цифровыми корнями исходных чисел. Цифровые корни можно объединить в группы из трех чисел восьмью различными способами
146 | 147 | 167 | 177 | 467 | 477 | 677 | 777 |
2 | 3 | 5 | 6 | 8 | 9 | 2 | 3 |
(Внизу выписаны цифровые корни.) Как показано в моей книге «Математические развлечения», цифровой корень квадрата должен равняться 1, 4, 7 или 9. Поэтому искомые числа должны иметь цифровые корни 4, 7, 7. Две семерки можно выбрать тремя способами. Но если бы пятое число содержалось среди искомых, то их сумма оканчивалась бы на 189 или на 389, что невозможно для квадрата, ибо в нем перед 89 должно стоять четное число или 0. Следовательно, ответ имеет вид
В правой части стоит число, равное квадрату 3645.