Читаем Пятьсот двадцать головоломок полностью

60. Езда в ветреную погоду. Велосипедист проезжает километр за 3 мин, если ветер дует в спину, и за 4 мин, если ехать приходится против встречного ветра. За сколько времени он проедет 1 км, если ветер утихнет? Кто-нибудь, возможно, скажет, что, поскольку среднее арифметическое 3 и 4 равно 3½ велосипедисту потребуется 3½ мин, однако такое решение неверно.

61. Головоломка с гребцами. Команда гребцов может пройти на своей лодке данное расстояние против течения за 8 мин. В отсутствие течения это же расстояние она проходит за время на 7 мин меньше, чем то, которое потребуется, чтобы пройти его по течению. За сколько минут команда проходит данное расстояние по течению?

62. Эскалатор. Находясь на одном из эскалаторов лондонского метро, я обнаружил, что, прошагав 26 ступенек, я спустился бы до платформы за 30 с. Но если бы я прошагал 34 ступеньки, весь спуск занял бы 18 с. Сколько ступенек в эскалаторе? Время измеряется от момента, когда верхняя ступенька начинает опускаться, до того момента, когда я схожу с последней ступеньки на платформу.

63. Один велосипед на двоих. Двум братьям нужно было отправиться в путь и прибыть в пункт назначения одновременно. У них был только один велосипед, на котором они ехали по очереди, причем тот, кто ехал, когда истекало его время, слезал с велосипеда и, оставив его у забора, шел вперед пешком, не ожидая брата, а тот, кто шел сзади, дойдя до этого места, подбирал велосипед и ехал свое время и т. д. Где им лучше всего меняться велосипедом? Если скорости движения пешехода и велосипедиста одинаковы, то решить задачу крайне легко. Следует просто разделить путь на четное число участков равной длины и меняться велосипедом в конце каждого такого участка, который можно определить, например, по счетчику расстояния. В этом случае каждый из братьев половину пути пройдет пешком, а половину проедет на велосипеде.

Но вот аналогичная задача, которая решается не столь просто. Андерсон и Браун должны преодолеть расстояние в 20 км и одновременно прибыть в пункт назначения. У них один велосипед на двоих. Андерсон проходит пешком лишь 4, а Браун — 5 км/ч. Зато на велосипеде Андерсон едет со скоростью 10, а Браун лишь 8 км/ч. Где им надо меняться велосипедом? Каждый из них или едет, или идет пешком, не делая в пути ни одного привала.

64. Снова о велосипеде. Дополним условие предыдущей задачи третьим участником, который пользуется тем же велосипедом. Предположим, что Андерсон и Браун взяли с собой человека по имени Картер. Они делают пешком соответственно по 4,5 и 3 км/ч, а на велосипеде — по 10, 8 и 12 км/ч. Как им следует пользоваться велосипедом, чтобы преодолеть за одно и то же время расстояние 20 км?

65. Мотоцикл с коляской. Аткинс, Болдуин и Кларк решили совершить путешествие. Их путь составит 52 км. У Аткинса есть мотоцикл с одноместной коляской. Он должен подвезти одного из своих товарищей на какое-то расстояние, высадить его, чтобы тот дальше шел пешком, вернуться назад, подобрать другого товарища, который вышел одновременно с ними, и поехать дальше так, чтобы все трое прибыли в пункт назначения в одно и то же время. Как это сделать?

Скорость мотоцикла 20 км/ч, Болдуин может идти пешком со скоростью 5, а Кларк — 4 км/ч. Разумеется, каждый старается двигаться как можно быстрее и в пути нигде не задерживается.

Задачу можно было бы усложнить введением большего числа пассажиров, а в нашем случае она настолько упрощена, что даже все расстояния выражаются целым числом километров.

66. Связной. Армейская колонна длиной 40 км проходит 40 км. Сколько километров проделает связной, посланный с пакетом из арьергарда в авангард и возвратившийся назад?

67. Два поезда. Два железнодорожных состава, один длиной 400, а другой 200 футов, движутся по параллельным путям. Когда они движутся в противоположных направлениях, то каждый проходит мимо другого за 5 с, а когда они идут в одном направлении, то более быстрый проходит мимо другого за 15 с. Один любопытный пассажир, используя эти данные, сумел определить скорость обоих поездов[5].

68. От Пиклминстера до Квиквилля. Два поезда А и В отправляются из Пиклминстера в Квиквилль одновременно с поездами С и D, отправляющимися из Квиквилля в Пиклминстер. Поезд А встречает поезд С за 120 миль, а поезд D за 140 миль от Пиклминстера. Поезд В встречает поезд С за 126 миль от Квиквилля, а поезд D — на полпути между Пиклминстером и Квиквиллем. Каково расстояние от Пиклминстера до Квиквилля? Все поезда идут с постоянными скоростями, не слишком отличающимися от обычных.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное