Читаем PIC-микроконтроллеры. Все, что вам необходимо знать полностью

#include <16f877a.h>

#use delay (clock = 20000000) /* Сообщаем компилятору частоту резонатора (20 МГц) */

/* Сообщаем компилятору о требуемой скорости обмена и используемых выводах */

#use rs232(baud=9600, xmit=PIN_A1, rcv=PIN_A2)

#bit SWITCH1 =6.0 /* Кнопка подключена к RB0 */

void main(void)

{

      while(TRUE)

       {

              if(getch() == ’G’)

              {

                  while (SWITCH1) {;} /* Пока кнопка разомкнута (1), ничего не делаем */

                  printf("Кнопка 1 замкнута \n");

               }

        }

}

Поскольку в качестве выводов приемника и передатчика используются выводы RA1 и RA2, компилятор сгенерирует код программно-реализованного UART, подобный использованному нами в Программе 12.14. Именно по этой причине компилятору необходима информация о частоте кварцевого резонатора микроконтроллера — для формирования требуемых задержек. Если же мы укажем выводы RC6 и RC7, то для реализации последовательного интерфейса компилятор автоматически воспользуется встроенным модулем USART. В нашем примере для реализации программного UART потребовалось 146 команд, тогда как при использовании модуля UART размер программы составил всего 74 команды.

Однако для реализации полноценного соединения недостаточно одного только выбора подходящего протокола. При работе микроконтроллеров PIC используются напряжения нормальных логических уровней и токи, которые предназначены для организации соединений на расстояниях не более 30 см (1 фут). Хотя при соблюдении определенных правил[163] это расстояние можно значительно увеличить, при относительно больших скоростях обмена должны использоваться принципиально другие методы формирования сигналов.

В эпоху электромеханических терминалов широко использовался интерфейс «Токовая петля 20 мА», ставший стандартом де-факто. В этом интерфейсе для обозначения состояний лог. 0 и лог. 1 использовались разные значения тока: 0 мА и 20 мА соответственно. Привязка к току, а не напряжению позволяла избежать влияния потерь в линии (поскольку вытекающий ток должен быть равен втекающему), и, кроме того, тока такой величины было достаточно для непосредственного управления электромагнитным реле приемного устройства.

Источники тока реализуются посредством источников высокого напряжения, последовательно с которыми включается большое сопротивление. Именно из-за последнего величины постоянных времени получаются настолько большими, что хотя они и удовлетворяли требованиям эпохи скоростей в 110 бод, но для использования в электронных терминалах, UART и модемах не годятся. В качестве стандартного интерфейса для подключения терминального оборудования (Data Terminal Equipment — DTE) к устройствам передачи данных (Data Circuit Equipment — DCE), как правило к модемам, в 1969 году был предложен интерфейс RS-232[164]. В спецификации этого интерфейса были определены не только различные уровни сигналов, как показано на Рис. 12.24, а, но и различные линии управления и квитирования, некоторые из которых показаны на Рис. 12.24, г и Рис. 12.25. Например, выдачей активного уровня на линию квитирования готовности к передаче (Clear То Send — CTS) модем может сообщить локальному терминалу о том, что удаленный терминал освободил телефонную линию. Для организации дуплексной линии связи необходимо две линии данных плюс общий провод как опция.

Рис. 12.24.Некоторые варианты последовательной передачи данных

Стандарт RS-232 рассчитан на дальность до 15 м (50 футов) при максимальной скорости 20 Кбод, что достигается использованием для передачи лог. 0 (это состояние линии часто называется space) напряжения +12 В, а для передачи лог. 1 (mark) — напряжения —12 В. Минимальное же напряжение, при котором приемник может распознавать состояние линии, составляет ±3 В. Интерфейс стандарта RS-423 (1978 г.), показанный на Рис. 12.24, б, похож на RS-232, но позволяет управлять несколькими (до десяти) приемными устройствами на расстоянии 1.2 км (6000 футов) при скорости до 1 Кбод и на расстоянии до 12 м (40 футов) при скорости 100 Кбод.

Перейти на страницу:

Все книги серии Программируемые системы

PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника

Похожие книги

Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки