Работа системы контроля количества топлива на протяжении всего полета соответствовала расчетам. Ожидаемые величины и результаты телеметрии приведены на рис. 16.6. Эти данные показывают, что измеряемые в обоих баках количества окислителя расходятся к концу второго запуска. Датчик полной выработки компонентов топлива сработал на 685 сек после зажигания (за 71 сек до подачи команды на выключение двигателя и за 116 сек до расчетного момента полной выработки компонентов).
Рис. 16.6. Расход окислителя в двигательной установке посадочной ступени лунного корабля Apollo-11
После посадки лунного корабля на поверхность Луны для сброса давления из бачка с гелием и из топливных баков отработавшей двигательной установки посадочной ступени были открыты послепосадочные дренажные клапаны окислителя и горючего. Режим дренажа окислителя был номинальным. Дренаж горючего сопровождался неожиданным ростом давления горючего на входе в двигатель (рис. 16.7).
Дренаж гелиевого бачка одновременно с дренажем топливных баков привел к замораживанию горючего во внешнем теплообменнике. Наблюдавшийся неожиданно высокий рост давления горючего на входе в двигатель был вызван термическим расширением горючего в замкнутом объеме между замерзшим теплообменником и отсечными клапанами за счет теплоподвода от камеры сгорания. Для следующих полетов было решено не производить дренаж бачка со сверхкритическим гелием до взлета с Луны. Это достигается закрытием запорных гелиевых клапанов.
В табл. 13 и 14 приводятся ожидаемые и летные характеристики двигательной установки посадочной ступени лунного корабля Appollo-11.
Двигательная установка взлетной ступени
Двигатель осуществил старт с посадочной ступени и вывел взлетную ступень на окололунную орбиту. Все давления и температуры были номинальными. ЖРД работал на полной тяге 237 сек. На рис. 16.8 показано давление гелия в баллонах системы наддува.
В табл. 15 и 16 даются расчетные и измеренные в полете характеристики двигательной установки взлетной ступени лунного корабля Apollo-11.
Литература
1. The Apollo spacecraft. Space World, 1969, № F-3 (ЭИ АиР, 1969, № 32)
2. Apollo lunar module. Spaceilight, 1969, 11, № 6, (ЭИ АиР, 1969, №38)
3. Mc Carthy J. F., Dodds J. I., Crowder R. S.
Development of the Apollo launch escape system. J. Spacecraft and Rockets, 1968, 5, № 8, ЭИ АиР, 1969, № 1; РЖ, 1969, 3.41.1564. Ryan R. S., Kiefling Z. A., Buchanan H. J., J.arvinen W. A.
Simulation of Saturn V S-II stage propellant feeding dynamics. AIAA Paper № 70—626, ЭИ АиР, 1970, № 39; РЖ, 1970, 11.41.2145. Тawil М. N., Caloger P.
The use of multilayer insulation on the LM vehicle. AIAA Paper № 69—609, (ЭИ АиР, 1970, № 7)6. Strickland Z.
Lunar rover-ready for Moon drive. Aviat. Week and Space Technol., 1971, 94, № 21. ЭИ АиР, 1971, № 40; РЖ 1971, 11.41.2577. Davisson J. С., Мс.Harris J. A.
S-IVB restart chilldown experience. AIAA Paper № 70—672, (ЭИ АиР, 1970, № 42).8. Sandford J. W., Магtin J. E.,
The Saturn V for the «70 s» SAE Preprints, 1969, № 715, (ЭИ АиР, 1970, № 21)9. Renman R. E., Mendelsohn A. R.
Lunar module thermal control and life support systems for Apollo applications. SAE Preprints, 1969, № 625, ЭИ АиР, 1970, № 21; РЖ, 1970, 6.41.9310. Long L. L., Hammitt R. L.
Meteoroid performaition effects on space cabin design. AIAA Paper № 69—365. РЖ, 1970, 2.41.21711. Mc Allum W. E.
Development of meteoroid protection for extravehicular activity space suits. AIAA Paper № 69—366, ЭИ АиР 1969 № 46; РЖ, 1970, 2.41.124