Распределение массы лунного корабля таково, что главные оси моментов инерции проходят вблизи осей Q и R, а не U и V. В результате, момент от ЖРД оси V порождает угловое ускорение не только относительно оси V, но и относительно оси U. Величина одновременно возникающего перекрестного ускорения такова, что в худшем случае вектор углового ускорения отклоняется на 15° от действующего вектора момента.
Чтобы устранить перекрестное влияние каналов управления ЖРД РСУ, была введена неортогональная система осей координат U' и V' (рис. 24.7).
Направление осей U' и V' определялось единственным требованием, чтобы направление U' было ортогонально угловому ускорению, возникающему от вектора момента оси V или вектора момента оси Р, направление V было ортогонально угловому ускорению, возникающему от вектора момента оси U или момента оси Р. Управления, определяющие угол ? имеют вид
Находя вектор ошибки ориентации и вектор ошибки угловой скорости на осях U' и V' и используя компоненты U' и V' для определения требуемых векторов моментов ЖРД РСУ по осям U и V, исключается перекрестное влияние каналов управления.
Закон управления направлением вектора тяги
При проектировании управления карданом ЖРД для изменения направления вектора тяги посадочной ступени лунного корабля предусматривалось использование этого управления для совмещения вектора тяги с центром масс аппарата и уменьшения таким образом расхода топлива на ЖРД РСУ. Так как управление ориентацией должно обеспечиваться ЖРД РСУ, при проектировании не требовалось задавать большую угловую скорость изменения направления вектора тяги, и был выбран маломощный и легкий привод кардана, обеспечивающий изменение угла отклонения ЖРД со скоростью 0,2 град/сек. Привод связан с ЦАП простым принципом включено-выключено. Для обеих осей Q и R, вокруг которых можно поворачивать вектор тяги, ЦАП может давать команды на угловую скорость 0,2 град/сек; -0,2 град/сек или ноль.
Однако минимизация расхода топлива на ЖРД РСУ была основной проблемой, и так как в процессе торможения и посадки ЖРД посадочной ступени работает все время, искали закон управления ориентацией с использованием посадочного ЖРД и без включения ЖРД РСУ по каналам U и V. Выбранному закону соответствует минимальное время управления.
Дифференциальное уравнение, связывающее сигнал, управляющий карданом ЖРД, с отклонением лунного корабля от требуемой ориентации относительно осей Q и R, имеет вид
Первая и вторая производные от ошибки ориентации по времени есть ошибка угловой скорости и ошибка углового ускорения. Предполагая, что все переменные состояния, используемые законом управления, измеряются без шума и без ошибок, оптимальное управление можно определить как функцию состояния системы в данный момент следующим образом
Параметр С имеет размерность – время и обращает переменные состояния (?e, ?e, ?e) в безразмерные переменные (x1, X2, X3). Оптимальный управляющий сигнал uoptдается в безразмерных величинах состояния системы.
Работа цифрового автопилота при первой посадке на Луну
В процессе первой посадки на Луну ЦАП в начале управлял лунным кораблем в автоматическом режиме и в конце по командам от ручки управления ориентацией; при этом ориентация вектора тяги ЖРД и лунного корабля изменилась от горизонтальной в начале торможения до вертикальной при посадке.
Первые 4 мин активного участка торможения после начального неустановившегося режима закон управления ориентацией вектора тяги работал успешно, медленно изменяя ориентацию без помощи ЖРД РСУ по каналам U и V. Затем из-за плескания топлива в баках возникли колебания большой амплитуды, выходящей за пределы зоны нечувствительности закона управления ЖРД РСУ. ЦАП вырабатывал команды управления ЖРД РСУ, ограничивавшие амплитуду колебаний лунного корабля.
Колебания угловой скорости тангажа с частотой 0,5 гц из-за плескания топлива видны на рис. 24.8.
Автоматическое управление вело лунный корабль на посадку в кратер размерами с футбольное поле с большим количеством огромных камней. Н. Армстронг переключил ЦАП на ручное управление, изменил курс корабля, перелетел кратер, выбрал ровное место, и посадил корабль с помощью ручного управления.
После взлета с Луны управление с помощью ЦАП тангажом взлетной ступени показано на рис. 24.9. После старта и вертикального подъема в течение 10 сек была подана команда на автоматическое управление тантажом со скоростью 10 град/сек и выход на угол тангажа 52°.
После окончания маневра по тангажу наблюдался типичный низкочастотный предельный цикл изменения ориентации.