Параметры гиперповерхности используются в качестве независимых переменных полиномов, описывающих активный участок ступени S-IVB. С помощью этих полиномов определяются параметры участка выведения к Луне и вектора состояния. На рис. 31.2 показаны участок выведения и геометрические соотношения для определения гиперповерхности.
При использовании полиномов необходимо знать удельную энергию на траектории к Луне С3, угол между вектором цели и радиусом-вектором перигея ?, а также склонение вектора цели относительно плоскости промежуточной орбиты ?. С помощью полиномов вычисляются параметры: ? – угол между радиусом-вектором точки начала выведения и проекцией вектора цели на плоскость промежуточной орбиты (Т'); ? – угол между радиусом-вектором точки начала выведения и узлом орбиты (?); ? —истинная аномалия радиуса-вектора точки конца выведения; Rp – радиус перигея участка выведения к Луне. Параметры ?, ?, ? и Rp задают вектор состояния участка выведения.
В системе уравнений указанные величины используются для определения параметров активного участка и вычисления переменных, соответствующих моменту выключения двигателя. По полиномам также вычисляется приращение характеристикой скорости ?V при повторном включении ступени S-IVB. Величина этого приращения необходима для определения веса аппарата и времени работы двигателя. Из-за неточности учета влияния сжатия Земли и модели изменения тяги расчеты по полиномам не совпадают с результатами оптимизации активного участка методом вариационного исчисления на основе ожидаемых параметров отлета от Земли. Поэтому полиномы тарируются, чтобы обеспечить данные, точно совпадающие с результатами расчета активного участка методом вариационного исчисления. Постоянные поправочные члены, необходимые для тарировки, вычисляются как разница между результатами расчета методом вариационного исчисления и величинами, полученными путем оценки полиномов в первом приближении при С3=С3g (где C3g – приближенное значение), ?=0 (компланарный случай) и ?=6°:
где индекс «вар» относится к результатам расчета методом вариационного исчисления.
В компланарном случае ?=?+? и ??=??. Указанные поправочные члены получены для обеих возможностей запуска и должны использоваться всякий раз, когда параметры активного участка вычисляются по аппроксимирующим полиномам. Полиномы для участка выведения к Луне тарируются путем добавления вычисленных поправочных членов к приближенным величинам, полученным при подстановке в полиномы текущих величин С3, ? и ?.
Полином, определяющий величину ?V при втором включении ступени S-IVB, не тарируется. Однако при каждом расчете по полиному вычисляется разница между компланарным значением ?V, основанным на параметрах первого приближения (C3g, ?=0, ?=6°), и значением ?V, определяемым текущими величинами указанных параметров:
Логика выбора времени запуска
При планировании задачи полета на Луну определенное преимущество достигается в случае двух возможностей отлета с околоземной орбиты. Вторая возможность появляется приблизительно через 90 мин после первой (т. е. через один оборот на промежуточной орбите ИСЗ) и оказывается полезной в тех случаях, когда не все системы ракеты-носителя и космического корабля проверены и готовы к повторному включению двигателя для выведения на траекторию полета к Луне. В процессе подготовки полета принимается решение о том, сохранять ли время перелета к Луне для второй возможности таким же, какое требовалось для первой (класс 1) или уменьшить время полета для второй возможности на 90 мин (класс 2). Уменьшение времени перелета на 90 мин при использовании второй возможности позволяет сохранить время прибытия к Луне приблизительно таким же, как для первой возможности.
В процессе прицеливания ракеты-носителя и выбора времени запуска исследуются оба класса перелетов с целью получения максимального веса на траектории к Луне для обеих возможностей запуска. Рис. 31.3 иллюстрирует логику выбора времени запуска для двух рассматриваемых классов.
Перелет с постоянным временем (класс 1)