Читаем Пинбол-эффект. От византийских мозаик до транзисторов и другие путешествия во времени полностью

Идея радиометра пришла ему в голову во время работы с таллием. Он взвешивал кусочки этого металла на весах в вакууме и обратил внимание, что теплые образцы легче холодных. Крукс решил, что существует связь между температурой и гравитацией и продолжил изучение феномена — он особенно интересовал его с точки зрения действия «психических сил». Экспериментально он выяснил, что если в вакууме к объекту большей массы приблизить объект меньшей массы, то они либо притягиваются, либо отталкиваются, и чем чище вакуум, тем сильнее эффект. В 1873 году Крукс был убежден, что открыл отталкивающее действие излучения.

Чтобы исследовать этот феномен, он и придумал радиометр. Он представлял собой тонкую стальную вертикальную ось с насаженными на нее четырьмя тонкими лопастями. Одна из сторон каждой лопасти была выкрашена в черный цвет. Все сооружение помещалось в стеклянной емкости. Когда к сосуду подносили источник света, лопасти радиометра вращались. Крукс объявил, что это движение есть не что иное, как действие «давления света». Именно это предположение подтолкнуло Прингсхайма к экспериментам с инфракрасным светом.

Как позже выяснилось, и Крукс, и Прингсхайм заблуждались. В 1875 году самым выдающимся экспертом в гидравлике считался профессор математики из Манчестера Осборн Рейнольдс (знаменитый своей привычкой время от времени прерывать лекцию на полуслове и бежать к доске, чтобы записать новую идею). Ему удалось доказать, что даже если из сосуда радиометра максимально выкачан воздух, нагревание лопастей светом вызывает выделение небольшого количества молекул газа, которые также нагреваются и движутся, создавая давление на лепестки «вертушки». Этим и объясняется вращение лопастей прибора.

Увлечение Рейнольдса гидравликой и гидродинамикой привело его к серии важных открытий и изобретений. Он разработал методы моделирования поведения воды в устьях рек и каналах, получил патенты на усовершенствования насосов и турбин, произвел математические расчеты для постройки масштабных моделей кораблей, описал образование пустот в воде при вращении гребных винтов, изучил охлаждающий эффект дождя на морскую поверхность, объяснил, почему шарик для пинг-понга не падает с вертикальной струи воды, а также рассказал о том, почему едут лыжи — снег под ними подтаивает. Также у него была забавная теория о том, что Вселенная состоит из маленьких шариков.

Самым большим вкладом Рейнольдса в сумму человеческих знаний стало открытие числа, которое сегодня носит его имя. Так называемое число Рейнольдса представляет собой жизненно важное для гидродинамики отношение скорости и плотности жидкости, а также диаметра отверстия, через которое она протекает, к ее вязкости. Важнейшим практическим применением числа Рейнольдса стало то, что оно помогает инженерам избегать турбулентных завихрений в жидкостях. Благодаря этому корабли плывут ровно, каналы не выходят из берегов, исправно работают насосы, а водопроводные и газовые трубы в наших домах не протекают. Так же сложно переоценить важность числа Рейнольдса для туристической и авиаиндустрии — оно лежит в основе аэродинамики и помогает конструировать самолеты. Используя это отношение, братья Райт сначала построили аэродинамическую трубу, испытали в ней три планера, а уж потом сами поднялись в воздух на своем аэроплане.

Но и это еще не все, чем мы обязаны Рейнольдсу. Он исследовал значение смазки для важнейшей детали будущего авиационного мотора братьев Райт. Приспособление это с 1879 года использовалось в конструкции велосипедов, а поскольку братья Райт раньше сами продавали и чинили велосипеды 281  —  68 ,  77, они были прекрасно осведомлены о нем. Речь идет о шарикоподшипниках.

Человеком, который познакомил инженеров всего мира с шарикоподшипниками, был немец по имени Стрибек. В конце XIX века он провел громадное количество опытов с подшипниками самых разных моделей в самых разных условиях. Он тестировал цилиндрические и сферические подшипники, подшипники из закаленной и обычной стали, в чашечках, в кольцах, в тарелках, с кольцеобразным гребнем, по одному и по несколько штук, в желобе, с нагрузкой под разными углами, вращающиеся быстро и медленно, подшипники со смазкой и сухие подшипники, при высокой и низкой температурах, гладкие и рифленые, большие и маленькие, а также под давлением тяжелого груза до разрушения. Стрибек выяснил, что лучше всего работают подшипники на базе шариков, помещенных во внутреннюю канавку, именно ее наличие обеспечивает оптимальное распределение нагрузки.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже