Только что изготовленный выпрямитель пропускает ток в обоих направлениях. Поэтому его сначала надо отформовать. Формовка производится просто. Составляют электрическую цепь из лампочки мощностью 40–50 ватт, соединенной последовательно с выпрямителем, и включают в сеть переменного тока. Первоначально лампочка будет гореть почти нормальным накалом, но через некоторое время накал ее начнет постепенно ослабевать, и лампочка может совсем погаснуть. Это свидетельствует о том, что выпрямитель сформовался. В сформованном выпрямителе алюминиевый электрод покрывается тонким слоем окиси алюминия. Окись обладает свойством пропускать ток, идущий через электролит, только в одном направлении— от свинцового или железного электрода к алюминиевому. Поэтому для внешней цепи алюминиевый электрод будет служить положительным полюсом выпрямителя, а свинцовый или железный электрод — отрицательным.
Величина выпрямляемого тока зависит от размеров алюминиевого электрода. Можно предварительно определить величину тока, даваемого выпрямителем. Нормальной нагрузкой электролитического выпрямителя считается плотность тока 0,005 ампера (5 миллиампер) на 1 кв. сантиметр алюминиевого электрода, учитывая его поверхность с обеих сторон. При большей плотности тока выпрямитель будет работать плохо: быстро нагревается электролит, действие выпрямителя значительно ослабевает и даже совсем прекращается.
Чтобы электролит меньше нагревался, сосуд для него берут большей емкости.
Для более полного использования переменного тока выпрямитель составляют из четырех выпрямителей, соединенных по схеме, показанной на рисунке 80. Эта схема получила название двухполупериодного выпрямителя.
Рис 80.
В современной технике очень широкое распространение получили полупроводниковые селеновые выпрямители. Известно, что кристаллический селен является полупроводником, то есть пропускает ток только в одном направлении. Селеновый выпрямитель представляет собой столбик (рис. 81, в), состоящий из отдельных выпрямительных элементов — селеновых шайб, насаженных на изолированную стальную шпильку 9 и скрепленных стяжными гайками 11.
Внешний вид селеновой шайбы и ее конструкция показаны на рисунках 81, а, к.
Рис. 81.
Основанием шайбы является железный или алюминиевый диск 1, покрытый тонким слоем никеля 2 для предохранения от коррозии. Одна сторона диска покрывается слоем толщиной 0,07 — 0,1 миллиметра кристаллического селена 3. На поверхность селена наносится слой сплава из олова, кадмия и висмута. Этот сплав хорошо проводит ток, образует надежный контакт с селеном. Он называется катодным слоем 5. В процессе формовки шайбы электрическим током на границе между селеном и катодным слоем образуется очень тонкий переходный слой, называемый запорным слоем 4, который и определяет одностороннюю проводимость шайбы. После формовки шайба хорошо пропускает электроны от катодного слоя через селен к железу и почти не пропускает их от железа к катодному слою. Поэтому со стороны катодного слоя шайба имеет положительный полюс (+), а со стороны железа отрицательный полюс (—). Шайба надевается на изолирующую трубку 6, в которую вставляется стягивающая шпилька 9. К катодному слою прикладывается латунная контактная пружинная шайба 7 и прижимается при помощи металлической шайбы 8.