Читаем Питон - модули, пакеты, классы, экземпляры. полностью

Описание класса создает новое пространство имен, в котором определяются статические переменные (в нашем примере это bar) и методы. Создание экземпляра порождает пространство имен объекта, доступ к которому осуществляется через переменную экземпляра класса foo, а внутри методов класса - через переменную self.

Классы в Питоне позволяют программисту создавать новые типы данных и определять для них все операции, доступные для встроенных типов. Например, метод __getitem__ позволяет индексировать объект, а __setitem__ - присваивать индексу объекта. Метод __getitem__ также позволяет объекту участвовать в цикле for, эмулируя последовательность (sequence). Есть методы, позволяющие объекту эмулировать булевские значения и участвовать в операторах if и while. Методы __getattr__ и __setattr__ позволяют читать и писать атрибуты объектов. Метод __call__ позволяет вызывать экземпляр класса с параметрами!

Python позволяет переопределить все инфиксные операции, причем отдельно для левого и правого аргумента выражения. Например, если a - экземпляр класса A, и b - экземпляр класса B, то для вычисления выражения a + b Питон будет сначала искать метод __add__ в классе A, а если не найдет - то метод __radd__ в классе B (а если и там не найдет - возбудит исключение TypeError).

Многие программисты, особенно писавшие на C++, боятся и не любят множественного наследования. Авторы языка Java вообще не включили множественное наследование в язык. Совершенно напрасно! Python позволяет использовать множественное наследование весьма успешно и удобно. Множественное наследование облегчает переиспользование кода (code reuse) вместо copy/paste-программирования, что очень важно и для эффективности, и для читаемости программ, и для отладки. Часто программисты на Питоне создают класс с помощью множественного наследования из нескольких связанных между собой "кирпичиков", словно из конструктора. Такие "кирпичики" в ОО-программировании называются MixIn-классами. Подробную статью про программирование с помощью MixIn-классов можно прочесть в Linux Journal

Еще один способ использования классов (точнее, экземпляров), не связанный непосредственно с ОО-программированием - использование пространства имен, которое предоставляет объект. Рассмотрим следующую проблему. Вам надо пройти циклом по списку, сохраняя между итерациями цикла некоторую информацию. Это можно сделать циклом for, никаких проблем. А можно воспользоваться возможностями функционального программирования, которые есть в Питоне - функциями map, filter, reduce и тому подобное. Эти функции требую в качестве первого параметра функцию, которую они в процессе цикла вызывают. Это эффективнее, чем цикл for (эти функции-то написаны на C), но возникает проблема с хранением состояния между итерациями. Функция, которую вызывает map может хранить состояние только в глобальных переменных. Для простых программ это вполне приемлемо. Но вот, скажем, с многопоточными программами будут проблемы - необходимо запирать и синхронизировать доступ к глобальным переменным. Да и вообще к глобальным переменным надо обращаться только при крайней нужде.

Вот тут на помощь приходит дополнительное пространство имен, существующее в экземпляре класса. Создадим класс

class Process:

def __init__(self):

self.foo = 0

def __call__(self, v):

if self.foo > 100:

raise OverflowError

self.foo += v

return self.foo

Создадим экземпляр этого класса: p = Process, и передадим этот объект в map вместо функции: result = map(p, sequence). Функция map, ничего не подозревая, будет вызывать переданный ей объект как функцию с одним параметром. Никаких проблем - мы так описали класс, что его экземпляры можно вызывать, и именно с одним параметром! И от итерации к итерации объект p сохраняет необходимое состояние.

Другой похожий пример:

class Process:

def __init__(self):

self.sum = 0

def add(self, v):

self.sum += v

return self.sum

p = Process

result = map(p.add, sequence)

print p.sum

Вся разница в этом примере - мы передаем не объект p, а его метод p.add. Но что такое p.add? В Python это особая сущность, называемая BoundMethod. Это объект, который помнит адрес объекта p, адрес функции add класса Process, и, когда его вызывают, в свою очередь вызывает метод класса с правильным первым параметром self. Если обратиться к этому методу как Process.add, то это - UnboundMethod, и его надо вызывать, подставив все параметры в явном виде: Process.add(p, 1). Вызов в таком виде часто используется для вызова родительского конструктора или метода:

class Foo(Bar)

def __init__(self):

Bar.__init__(self)

Еще один вариант использования этого трюка - сортировка списков. Списки в Питоне имеют метод sort, который принимает параметр - функцию сравнения. Если сравнение сложное, и зависит от внешних условий, в качестве функции можно передать заранее проинициализированный объект.

Перейти на страницу:

Похожие книги

97 этюдов для архитекторов программных систем
97 этюдов для архитекторов программных систем

Успешная карьера архитектора программного обеспечения требует хорошего владения как технической, так и деловой сторонами вопросов, связанных с проектированием архитектуры. В этой необычной книге ведущие архитекторы ПО со всего света обсуждают важные принципы разработки, выходящие далеко за пределы чисто технических вопросов.?Архитектор ПО выполняет роль посредника между командой разработчиков и бизнес-руководством компании, поэтому чтобы добиться успеха в этой профессии, необходимо не только овладеть различными технологиями, но и обеспечить работу над проектом в соответствии с бизнес-целями. В книге более 50 архитекторов рассказывают о том, что считают самым важным в своей работе, дают советы, как организовать общение с другими участниками проекта, как снизить сложность архитектуры, как оказывать поддержку разработчикам. Они щедро делятся множеством полезных идей и приемов, которые вынесли из своего многолетнего опыта. Авторы надеются, что книга станет источником вдохновения и руководством к действию для многих профессиональных программистов.

Билл де Ора , Майкл Хайгард , Нил Форд

Программирование, программы, базы данных / Базы данных / Программирование / Книги по IT
Основы программирования в Linux
Основы программирования в Linux

В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стан­дартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым. Для начинающих Linux-программистов

Нейл Мэтью , Ричард Стоунс , Татьяна Коротяева

ОС и Сети / Программирование / Книги по IT
C++
C++

С++ – это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей С++ является надмножеством языка программирования C. Помимо возможностей, которые дает C, С++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на легко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы. Ключевым понятием С++ является класс. Класс – это тип, определяемый пользователем. Классы обеспечивают сокрытие данных, гарантированную инициализацию данных, неявное преобразование типов для типов, определенных пользователем, динамическое задание типа, контролируемое пользователем управление памятью и механизмы перегрузки операций. С++ предоставляет гораздо лучшие, чем в C, средства выражения модульности программы и проверки типов. В языке есть также усовершенствования, не связанные непосредственно с классами, включающие в себя символические константы, inline-подстановку функций, параметры функции по умолчанию, перегруженные имена функций, операции управления свободной памятью и ссылочный тип. В С++ сохранены возможности языка C по работе с основными объектами аппаратного обеспечения (биты, байты, слова, адреса и т.п.). Это позволяет весьма эффективно реализовывать типы, определяемые пользователем. С++ и его стандартные библиотеки спроектированы так, чтобы обеспечивать переносимость. Имеющаяся на текущий момент реализация языка будет идти в большинстве систем, поддерживающих C. Из С++ программ можно использовать C библиотеки, и с С++ можно использовать большую часть инструментальных средств, поддерживающих программирование на C. Эта книга предназначена главным образом для того, чтобы помочь серьезным программистам изучить язык и применять его в нетривиальных проектах. В ней дано полное описание С++, много примеров и еще больше фрагментов программ.

Бьёрн Страуструп , Бьярн Страустрап , Мюррей Хилл

Программирование, программы, базы данных / Программирование / Книги по IT