Читаем Плач математика. Эссе о преподавании математики в школе полностью

Вы не начинаете работы с определений — вы начинаете ее с задачи. Никому в голову не приходила идея, что число может быть «иррациональным», до тех пор, пока Пифагор не попытался вычислить диагональ квадрата и не пришел к выводу, что она непредставима дробью. Определения имеют смысл, когда вы достигаете в работе той точки, где требуется осмысленное различение сущностей. Немотивированные же определения, напротив, скорее вызовут путаницу.

Это еще один пример того, как от учеников скрывают математический процесс, и исключают их из него. Ученики должны уметь вводить свои собственные определения по необходимости — чтобы самим ограничить обсуждаемое. Я не хочу, чтобы ученики говорили «определение», «теорема», «доказательство» — только «мое определение», «моя теорема», «мое доказательство».

Еще одна серьезная проблема с такой подачей материала в том, что она скучна. Эффективность и экономия противостоят хорошему преподаванию. Уверен, что Евклиду такая система не понравилась бы, и точно знаю, что ее не одобрил бы Архимед.


Симплицио. Подожди-ка минуточку. Не знаю, как тебе, а вот мне нравились уроки геометрии. Мне нравилась структура, нравилось доказательство в строгой форме.

Сальвиати. Не сомневаюсь, что так и было. Уверен, что ты иногда даже решал интересные задачи. Многим нравятся уроки геометрии (хотя куда более многие терпеть их не могут). Но это не аргумент в защиту существующего режима. Скорее, это яркое свидетельство притягательности самой математики. Сложно разломать нечто столь прекрасное: даже слабая тень ее будет и манить, и вознаграждать. Многим нравится и раскраски раскрашивать, ведь это расслабляющее и разноцветное рукоделие. Но они от этого живописью не делаются.

Симплицио. Но говорю же тебе: мне нравилась геометрия.

Сальвиати. И если бы у тебя случился более естественный математический опыт, тебе бы он понравился еще больше.

Симплицио. Значит, нам просто нужно организовать свободное от планов математическое путешествие, и ученики научатся тому, чему уж они научатся?

Сальвиати. Вот именно. Задачи ведут к другим задачам, техника вырабатывается по мере надобности, а новые темы возникают естественным образом. И если какой-то вопрос так и не возникнет за тринадцать лет обучения, насколько же он тогда интересен?

Симплицио. Да ты совсем с ума сошел!

Сальвиати. Возможно. Но даже работая в обычных рамках, хороший учитель может направлять обсуждение и переходить от задачи к задаче так, чтобы ученики могли открывать и изобретать для себя математику. Беда в том, что бюрократия не позволяет отдельному учителю это делать. При жестком наборе программ учитель не может вести за собой. Не должно быть стандартов, и не должно быть программ — только личности, делающие по собственному разумению лучшее возможное для учеников.

Симплицио. Но как тогда школы могут гарантировать одинаковые базовые знания учеников? Как мы сможем точно и объективно сравнить их?

Сальвиати. Никак, и мы не будем их сравнивать — все будет так, как бывает на самом деле. Рано или поздно ты оказываешься перед тем фактом, что люди все разные — и это хорошо. Как бы там ни было, но никакого давления на самом деле нет. Допустим, ученик оканчивает среднюю школу, не помня формул синуса и косинуса двойного угла (как будто выпускники их сейчас помнят). Ну и что? По крайней мере, у выпускника будет правильное понятие о настоящем предмете математики, по крайней мере он увидит нечто прекрасное!

Заключение

Завершая эту критику стандартной школьной программы, я хотел бы представить в помощь обществу первую до конца честную школьную программу по математике для всех классов.

Начальная школа

Начальное запаривание мозгов. Ученики постигнут, что математика — это не то, что ты делаешь, а то, что делают за тебя. Внимание уделяется дисциплине на занятиях, аккуратному заполнению прописей и тщательному исполнению инструкций. Дети изучат сложную систему алгоритмов для манипуляции символами непонятного алфавита, не  имеющую отношения к  тому, что им интересно и любопытно, несколько столетий назад считавшуюся слишком сложной для среднего взрослого. Особые усилия прикладываются к заучиванию таблицы умножения, а также к родителям, учителям и самим ученикам.

Средняя школа

Ученики обучатся взгляду на математику как совокупность шаманских ритуалов, вечных и неизменных. Ученикам будут выданы Священные Таблички учебников, и они обучаются говорить о старейших шаманах в третьем лице (например, «чего от меня хотят? они хотят, чтобы я что поделил?»). Искусственные, вымученные «текстовые задачи» будут введены, чтобы, по сравнению с ними, безумная зубрежка арифметики показалась приятной и интеллектуальной. Ученики сдают экзамены на знание бессмысленных технических терминов, таких, как «целое число», «правильная дробь», вводимых без малейших на то причин. Данный курс полностью подготовит ученика к курсу алгебры-1.

Алгебра-1

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже