Читаем Планеты и жизнь полностью

Но вернемся к процессу трансляции. И здесь ключевую роль играют специальные ферменты, способные «выбирать» из смеси определенную аминокислоту для присоединения к соответствующей тРНК. Но ведь структура этого фермента, в свою очередь, определяется (как, структура любого белка) последовательностью оснований на некотором участке ДНК? Да, мы опять встретились с той же ситуацией вечного двигателя.

На заключительной стадии синтеза белка на сцене появляются рибосомы и тРНК, структура которых, в свою очередь, определяется некоторым участком ДНК.

Мы видим в этой схеме неразрешимый в эволюционном плане парадокс. Его можно назвать парадоксом курицы и яйца (что было раньше, курица или яйцо) на молекулярном уровне.

Действительно, для синтеза какого-либо белка необходимо несколько специальных ферментов. Но для синтеза любого фермента нужен другой такой же фермент и так далее. Приходится признать, что эта схема не может удовлетворительно объяснить возникновение процесса матричного синтеза, так как получается замкнутый круг, и мы снова и снова приходим к вопросу о том, как возникли гены.



Но только ли этот вопрос встает перед нами? Отнюдь нет. Давайте еще раз присмотримся к различным этапам работы молекулярных машин.

Итак, матричная РНК синтезируется на одной из цепей дезоксирибонуклеиновой кислоты, отправляется к рибосомам и соединяется с ними. Как это происходит? Каким образом матричная РНК попадает на рибосомы?

Здесь, по всей видимости, имеет место некоторая специфичность механизмов связывания мРНК с рибосомами, взаимного химического узнавания. Ну а транспорт тРНК к рибосомам идет главным образом за счет беспорядочных, случайных движений, диффузии молекулы в клетке. На примере тРНК биофизики показали, что механизм диффузии в состоянии объяснить наблюдаемые скорости синтеза.

Нужно сказать, что современное представление о роли тРНК выработалось не сразу и первоначально основная роль отводилась мРНК как непосредственной матрице для синтеза. Казалось, что пространственные химические связи, или, как говорят химики, стереохимическое соответствие между кодоном и аминокислотой, решают вопрос об аминокислотной последовательности белка.

Адапторная гипотеза Крика явилась первым этапом на пути к выяснению истинной роли тРНК в процессе матричного синтеза. Крик предположил, что аминокислота взаимодействует с матричной РНК не непосредственно, а при помощи некоторых малых молекул, которые он предложил называть адапторами. Он считал, что адапторы представляют собой тринуклеотиды, с которыми аминокислота соединяется при помощи ферментативного механизма. (Трудно переоценить роль Ф. Крика в развитии современной молекулярной биологии. Порой кажется, что большая часть принципиальных идей в этой науке была выдвинута именно им.)

Сейчас ясно, что адапторы — это не что иное, как транспортные РНК, которые переносят активированные аминокислоты на рибонуклеиновую матрицу и рибосому. Адаптором транспортная РНК названа потому, что она обеспечивает возможность специфического взаимодействия между аминокислотой и матричной РНК.

Основным свойством, определяющим дальнейший механизм сборки аминокислот, является специфическое взаимодействие транспортной и матричной РНК. Аминокислота, связанная с транспортной РНК, уже никак не влияет на дальнейший механизм синтеза. Все последующие процессы определяются только взаимодействием антикодона транспортной РНК, кодона информационной РНК и рибосомы.

Для проверки этого положения были проведены эксперименты, в процессе которых удалось включить в белок неприродную аминокислоту, соединив ее ферментативно с транспортной РНК. Связывание антикодона с кодоном — неферментативный процесс. Он определяется тем же правилом спаривания оснований, правилом Чаргаффа, о котором мы уже говорили. Именно после соединения антикодона с кодоном и начинается последовательная сборка полипептидной цепочки.

Кстати, стоит сказать еще несколько слов о правиле Чаргаффа и о самом Чаргаффе. Биохимик из Колумбийского университета, австриец по происхождению Э. Чаргафф и его ученики еще со времен второй мировой войны изучали соотношение различных нуклеиновых оснований в разных препаратах ДНК. Установив количественно свое знаменитое правило, Чаргафф не дал ему никакого объяснения, хотя, имея в руках подобный материал, именно он, а не Уотсон с Криком, находился ближе всего к открытию структуры двойной спирали.

Более того, как пишет Уотсон, Чаргафф с нескрываемым презрением относился к их попыткам раскрыть структуру ДНК. И когда наконец весь мир признал великое открытие Уотсона и Крика, лишь один Чаргафф продолжал относиться к нему весьма скептически.

Но вернемся к нашему молекулярному «конвейеру».

Перейти на страницу:

Все книги серии Эврика

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука
Большое космическое путешествие
Большое космическое путешествие

Основой этой книги стал курс Принстонского университета, который читали гуманитариям три знаменитых астрофизика – Нил Деграсс Тайсон, Майкл Стросс и Джон Ричард Готт. Они рассказывают о том, что любят больше всего, и рассказывают так, что самые сложные теории становятся понятны неспециалистам.Астрономы не привыкли усложнять то, что может быть простым. Большие красные звезды – это красные гиганты. Маленькие белые звезды – это белые карлики. Если звезда пульсирует, она называется пульсар. Даже начало всего пространства, времени, материи и энергии, что существуют в космосе, можно назвать всего двумя простыми словами: Большой Взрыв.Что мы знаем о Вселенной? Наша Вселенная велика. Наш Космос гораздо больше, чем кажется. Он жарче, чем вы думаете. Плотнее, чем вы думаете. Разреженнее, чем вы думаете. Что бы вы ни думали о Вселенной, реальность все равно окажется невероятнее.Добро пожаловать во Вселенную!

Дж. Ричард Готт , Майкл А. Стросс , Нил Деграсс Тайсон

Астрономия и Космос