Читаем Платон полностью

В своей математике Платон развивал взгляды, характерные для его идеалистического учения о различии между чувственными вещами и их идеальными прообразами. В математике, думал он, точные выводы возможны не по отношению к чувственно воспринимаемым вещам, а только по отношению к идеальным предметам. Хотя математики пользуются чувственно воспринимаемыми фигурами и рассуждают о них, однако думают не о них, а о вещах, образом которых они являются; «доказательство они ведут для квадрата и диагонали в самой их сущности, но не для начерченных фигур… они именно и пытаются уяснить то, что можно видеть только умственными очами» (Государство, VI, 510 D).

Взгляд Платона на математику, конечно, есть идеализм. Но, как всякое крупное идеалистическое построение, он имеет гносеологический корень. В данном случае это необходимость для математической науки в переходе от непосредственного чувственного созерцания математических объектов к более высокой ступени абстракции. Так, при доказательстве несоизмеримости стороны квадрата с его диагональю нельзя ограничиться эмлирическим измерением прямолинейных отрезков: вопрос о том, имеют ли они общую меру или нет, лишен смысла, так как, например, ширина волоса уложится целое число раз в любом начерченном отрезке. «Вопрос о соизмеримости имеет смысл только для отрезков, создаваемых мыслью» (10, стр. 201).

Из математики Платон заимствовал свой метод доказательства при помощи приведения к абсурду, т. е. при помощи опровержения принятых гипотез (24). Этот метод основывался на мысли, что чувственно воспринимаемые вещи изменчивы и противоречивы. Напротив, истинное бытие не может обладать взаимно противоречащими свойствами.

К школе Платона примкнули крупнейшие математики его века. Список их сообщает Прокл в своем «Каталоге». Самыми выдающимися из них были Архит из Тарента, Теэтет и Евдокс. Из них Архит первый ввел Платона в круг проблем математики. Он же познакомил Платона с философией пифагорейцев. Теэтет и Евдокс были учителями Платона в области математики, но они же были его учениками в философии. Все они были его друзьями. В конце IV в. до н. э. результаты математики, добытые ее развитием в школе Платона, были собраны в трудах Евклида, прежде всего в его «Началах». По сообщению Прокла, Евклид сам был выучеником платоновской школы. В «Началах» Евклида, а также в его «Теории гармонии» и «Явлениях» излагаются как раз те четыре науки, которые Платон рекомендовал в своем «Государстве» в качестве философской пропедевтики. Эти науки – арифметика, геометрия, теория гармонии и астрономия. Сами «Начала» Евклида, по-видимому, продолжение традиции, основы которой были заложены примыкавшими к школе Платона авторами «Начал», предшествовавших евклидовским, математиками Гиппократом, Леонтием и Февдием.

Объем математических исследований, проведенных в школе Платона математиками – последователями философии Платона, был велик. Поразительно разнообразна деятельность Архита. С помощью остроумнейшего построения Архит решил так называемую делийскую задачу об удвоении куба. В связи со своей музыкальной теорией он доказал несколько теорем, относящихся к пропорциональности чисел. В сущности вся VIII книга «Начал» Евклида, излагающая арифметическую теорию непрерывных пропорций и теорию подобных чисел, – произведение Архита. Птоломей считает Архита самым крупным пифагорейским теоретиком музыки. Архит дал теоретическое обоснование той музыкальной теории, которая излагается в труде Евклида «Canonis». Велики его заслуги также в разработке механики. Диоген Лаэрций сообщает, что Архит первый разработал систематически механику на основе математики. Он не только писал о машинах, но был также конструктором машин. В частности, ему приписывают изобретение летающего деревянного голубя.

К «веку Платона» относится также деятельность Теэтета и Евдокса. Блестяще одаренный творческий математический ум, безупречный логик в разработке математических проблем, Теэтет был выведен Платоном в одноименном диалоге. В нем формулируется результат, который подробнее был развит в Х книге «Начал» Евклида и который дал возможность представить геометрическое понятие о соизмеримости сторон как арифметическое свойство чисел, измеряющих площади квадратов. Ван дер Варден убедительно обосновал предположение, что в основе Х и XIII книг Евклида лежит труд Теэтета.

Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия