Шахматы для нас сейчас — только пример. И ситуацию, над которой задумался гроссмейстер, кибернетик передал бы так: мозг, пользуясь недостаточными и частично неверными сведениями (тем, что Авербах назвал соображениями и вариантами), сумел из них извлечь максимум информации, которого оказалось достаточно, чтобы найти хорошее решение.
Это «чудо», когда вывод бывает формально необоснованным и одновременно правильным, является в полном смысле слова обыкновенным чудом. Поль де Крюи говорит, например, о великом русском ученом Мечникове:
«В противоположность Коху и Левенгуку, сила которых заключалась в умении ставить природе вопросы, Мечников читал сначала толстые книги об эволюции, загорался воодушевлением, кричал „да!“, а потом уже длинным рядом опытов пытался вырвать у природы признание его идей. И как это ни странно, он часто оказывался прав».
Для объяснения такой правоты говорят о научном чутье. А чутье просто, без эпитета «научное», в тех или других формах постоянно проявляется каждым из нас.
И как мозг «изготовляет» это чутье, пока загадка. Как ее решить? По-видимому, выход один. Надо найти способ извлечения максимума информации из минимума фактов. Это и будет до какой-то степени модель того, что можно называть чутьем — все равно, научным, комбинационным (в шахматах) или житейским.
В. В. Чавчанидзе попробовал предложить такую модель и ведет сейчас ее испытания.
Не так давно в газетах появились сенсационные сообщения. Группа дельцов, утверждающих, что они просто умело применили математику, выиграла большие деньги в рулетку в игорных домах Монте-Карло и других притонах азарта Западной Европы. Они заявляют, что открыли ту самую «систему» выигрыша, автора которой в Смоке Белью видели даусонские рулетковладельцы. Может ли быть в таких заявлениях хоть крупица здравого смысла? Вряд ли. А выигрыши? Здесь могут быть по крайней мере два ответа. Возможно, что в устройстве рулеток Монте-Карло есть какие-то конструктивные особенности, делающие выбор «случайного» числа недостаточно случайным. Закономерности здесь, если они есть, в принципе вполне возможно найти и использовать Ведь для этого не требуется даже найти обязательно выпадающие номера. Достаточно, чтобы попадать в точку удавалось в одном случае из двадцати, тридцати, даже тридцати четырех: ведь возможный выигрыш обычно в 35 раз больше ставки.
Словом, все происходит, как в случае с героем Джека Лондона.
Ну, а второй ответ еще проще. В последние годы интерес к азартным играм вроде рулетки на Западе если и не упал, то и растет не с той скоростью, о которой мечтают хозяева игорных домов. Не решили ли подогреть его надеждой на верный выигрыш? Тогда всю эту историю надо рассматривать как очень эффектный рекламный трюк. И все-таки, как мы видели, верный выигрыш на рулетке оказался возможен! И такой грандиозный, что рядом с ним меркнет все золото, когда бы то ни было прошедшее через столы Монте-Карло. Став научным инструментом, рулетка положила начало методам расчета и моделирования, которые позволяют по-новому подойти к проблемам чрезвычайной важности.
Вот еще одна из них. На ее примере посмотрим вместе, как входит статистико-вероятностное моделирование в биологию, и вместе с тем перейдем в следующий раздел книги, посвященный моделированию жизни в широком смысле слова — биологических объектов, свойств живых существ и их органов, процессов, идущих в живых существах, и т. д.
В этом же переходном разделе речь идет об основах жизни, об «атоме» ее — клетке.
Внутри «атома жизни»
Из клеток состоит все живое — от водоросли до человека. А между тем знания наши о жизненном атоме пока не слишком велики. Самое обидное то, что, обладая обширными знаниями о составе и строении клетки, о распределении обязанностей между ее составными частями, мы особенно мало знаем о химических и биохимических процессах, лежащих в основе ее работы. Одна из причин, пожалуй, — отсутствие обобщающей свойства всех клеток модели. Механика знает упрощенные модели своих подопечных — физических тел; небоскреб современной физики, как ни странно, сужается книзу, но от этого не становится менее устойчивым — в его фундаменте разнообразнейшие модели атома. Точнее, самого простого из атомов — водородного. Модели других атомов, естественно, сложнее, как сложнее и сами атомы. Но водородный атом — та печка, от которой проще всего танцевать. Клетка, бесспорно, играет роль той же печки в биологии. Но какую клетку взять за образец? Специализированную или разностороннюю? Растительную или животную? Гигантскую клетку — яйцо страуса — или красный кровяной шарик, каких в каждом из нас миллиарды?
Задача становится еще труднее потому, что клетка в определенном смысле слова значительно сложнее атома. Прежде всего она живет, она непрерывно меняется. Приказать этой жизни остановиться? Но ведь именно она нас и интересует!