Впрочем, если бы человек, создавая свои модели и приборы, думал всегда лишь о выгоде, дело кончилось бы плохо. Всякое новое дело на первой стадии приносит, с бухгалтерской точки зрения, в основном только убытки. В самом деле, никакой материальной пользы не принесли человечеству бесчисленные электронные зверьки, снующие по лабиринтам, путешествующие по комнатам, иногда даже дерущиеся между собой, все эти «мыши», «белочки» и «черепахи». Названия здесь чисто условны, по внешнему виду или по ассоциации: «мышь» ищет «сало» (магнит), «белочка» — «орешек» из стали. Зверьков таких строят и кружки юных техников и лаборатории под руководством академиков.
Пионеры идут буквально по стопам ученых, порою чуть ли не наступая на пятки своим многоопытным предшественникам. Но, как известно, сделанное часто кажется простым, когда оно уже сделано.
Начало всему этому «зоопарку» положил в 1951 году английский ученый Грей Уолтер, построивший трех электрочерепах. Первые две из них «просто» умели двигаться к источнику света. А третья, по имени Кора, умела, например, убегать и прятаться, если ее толкали. Когда толчок сочетался со свистком, у Коры быстро выработался своеобразный рефлекс — вернее, модель условного рефлекса. Стало достаточно свистка, чтобы Кора торопливо спряталась — свисток предупреждал ее о возможности удара.
Это была, по существу, простейшая модель обучения.
От черепах, вопреки всем законам биологии, произошла электрическая мышь.
Ее создатель, Клод Шеннон, дал ей очень звучное имя Тезей, в честь древнегреческого героя, убийцы чудовища, обитавшего в Критском лабиринте. Потому что задачей «мыши» было найти путь в центр лабиринта, где и лежало «сало».
(Любопытно, что в экспериментах часто используется точная копия лабиринта, что находится в старом английском городе Хемптон-Корте. Если вы читали веселую книгу Джером К. Джерома «Трое в одной лодке, не считая собаки», то должны помнить приключения одного из его героев, Гарриса, зашедшего в этот лабиринт. Больше часа блуждал бедняга вместе с десятками других людей по лабиринту, пока вернувшийся после обеда сторож не вывел их всех оттуда. А между тем у Гарриса был план лабиринта и даже некоторый план действий. Он полагал, что если все время сворачивать вправо, то придешь к выходу. Но планом-картой он пользоваться не умел, а придуманный им способ решения проблемы явно неудачен — первое же округлое препятствие заставило бы Гарриса бесконечно ходить вокруг него). Шеннон заставил свою «мышь» превзойти героя английского юмориста — она «знала» лучший способ пройти по лабиринту. Мало того, она «запомнила» простейший путь и во второй раз прошла его уже без лишних блужданий. С одной стороны, все здесь просто, как в фокусе, когда вам покажут, каким образом он выполняется. Но, с другой стороны, эта история заставляет вспомнить и второе значение слова «фокус» — так ведь называют в оптике точку, в которую собирает свет линза.
Лабиринт вовсе не только забава. Недаром первый лабиринт, место подвига Тезея, построил тот самый Дедал, который сделал крылья себе и сыну своему Икару, мифический основатель множества наук и ремесел. Недаром с древности служит лабиринт символом всякого запутанного пути не только в прямом смысле, но и в переносном, символом трудностей, с которыми встречаются наука и искусство. Но слово «символ» здесь недостаточно. Лабиринт — модель сложнейших процессов научного поиска. Модель, действующая в строгом соответствии с теорией подобия: и путь по лабиринту, и серию научных экспериментов, и технологический поиск можно описать совершенно однотипными уравнениями теории информации.
Мало того, к тем же уравнениям сводится и всякий эволюционный процесс, связанный с естественным отбором. Путь в лабиринте находится методом проб и ошибок. Тот же метод играет большую роль во всяком эксперименте. А что касается эволюции, то даже в словесном, не формализованном рассказе о ней нетрудно встретить чисто «лабиринтные» термины вроде «возвратов» и «тупиков».
Разумеется, однотипность уравнений не означает полного их совпадения. Разнятся коэффициенты, определяющие масштаб времени (сроки эволюции измеряются в тысячах, миллионах, десятках и даже сотнях миллионов лет; опыт может длиться и секунды и годы, путь «мыши Шеннона» по лабиринту отнимает у нее несколько минут); конечно, проб и ошибок при эксперименте, возвратов и тупиков в эволюции бывает несравненно больше, чем возвратов и тупиков в самом сложном из реальных лабиринтов.
Даже шахматную партию можно в принципе описать (так иногда ученые и делают) как путь через лабиринт. С каждым ходом игрок оказывается на новой площадке лабиринта; если ход плохой, он соответствует тупику и требует «возврата», если ход хороший, он представляет собой очередной шаг к центральной камере (или выходу).
Но вернемся к электронным животным. Появились и такие звери, у которых было и зрение, и слух, и осязание (впрочем, уже у черепахи Коры был фотоэлемент, соответствовавший зрению, она слышала свисток и замечала препятствия с помощью стального усика).