Итак, кризис, вызванный парадоксом Рассела — Цермелло, не преодолен и до сегодняшнего дня. И значение этого кризиса далеко не ограничивается рамками математики. В сущности, это глубокая философская проблема.
Столкновение с бесконечностью привело древнегреческих философов к зачаткам диалектического мышления. Оно показало, что реальный мир отнюдь не является зеркальным повторением наших идеализированных представлений о нем, что далеко не всегда и не во всем можно полностью доверяться наглядности и обыденному здравому смыслу.
Вторая встреча с бесконечностью — с бесконечно малыми величинами — также имела глубокое принципиальное значение. Она убедительно продемонстрировала, что понятие бесконечного не беспочвенная абстракция, ничего общего не имеющая с реальной действительностью — оказалось, что с бесконечностями можно оперировать и получать практические результаты.
Кризис, вызванный парадоксом Рассела — Цермелло, стал новой ступенью в изучении проблемы бесконечного.
И эта новая ступень, как с полным основанием считают многие ученые, потребовала и нового способа мышления, соответствующего тому уровню развития естествознания, какого оно достигло в нашу эпоху.
Существует ли такой способ? Да, существует. Это материалистическая диалектика, отражающая, с одной стороны, существо тех реальных процессов, которые происходят в окружающем нас мире, а с другой стороны, сложный и противоречивый процесс их познания.
И, пожалуй, самое знаменательное, что этот метод и сам по себе не является чем-то застывшим и раз навсегда данным. Как подчеркивал В. И. Ленин, диалектический материализм меняет свой вид с каждым великим научным открытием.
Революция в физике уже внесла свой весомый вклад в развитие материалистической диалектики. Теория относительности раскрыла перед нами глубочайшую внутреннюю взаимосвязь, казалось бы, совершенно разнородных явлений природы, убедила в том, что многие физические величины, представлявшиеся абсолютными, в действительности изменяются в зависимости от внешних условий. Квантовая теория разрушила метафизическое представление о причинности, показав, что будущее отнюдь не вытекает из прошлого с железной однозначностью, а связано с ним законами вероятности.
Кроме того, революция в физике продемонстрировала относительность наших знаний, не оставив сомнений в том, что любые естественнонаучные теории всегда обладают определенными границами применимости.
Что принесет с собой разрешение третьего великого кризиса в математике?
«Возможно, — говорит академик Наан, — мы стоим на пороге наиболее грандиозной революции в точных науках, в сравнении с которой даже коперниковская или канторовская революция или революции, связанные с открытием неэвклидовых геометрий, построением квантовой теории или теории относительности будут казаться не столь уж радикальными».
Проблема континуума
Одним из важнейших постулатов, на который опирались все существовавшие до сих пор физические картины мира, а вместе с ними и наше мировоззрение, является постулат о непрерывности пространства и времени, то есть об их неограниченной бесконечной делимости.
Вопрос стоит так: если имеются две сколь угодно близкие точки, можно ли поместить между ними еще одну? И то же самое для моментов времени.
— Мы даже не можем по-настоящему представить себе, каков был бы мир, например, со «щелями» во времени! — говорит академик Наан. — И все-таки подобную возможность нельзя считать заранее исключенной.
Одним словом, непрерывность — одно из тех математических понятий, которые играют важнейшую роль в построении современной физической картины мира.
Даже частичный отказ от постулата непрерывности повел бы не только к принципиальным изменениям наших физических представлений о Вселенной, но и к весьма существенным последствиям философского характера. Ведь с этим постулатом самым тесным образом связаны такие фундаментальные понятия, как причинность, познаваемость всех частей мира и многие другие.
Если пространство и время дискретны, то есть состоят из отдельных обособленных точек или моментов, разделенных непроходимыми щелями, то их общее число во Вселенной хотя и может быть бесконечным, но эта бесконечность не более чем счетная. Эти точки или моменты можно, в принципе, перенумеровать с помощью чисел натурального ряда.
Если же пространство и время непрерывны, то уже на любом отрезке длины или интервале времени мы встретимся с множеством более высокой мощности, чем счетная, — множеством мощности континуума.
Еще Георг Кантор сформулировал проблему, которая представляет не только чисто математический, но и глубокий физический интерес: насколько велика пропасть, разделяющая эти две бесконечности — счетную и континуальную?