Читаем По ту сторону кванта полностью

Атомная механика Гейзенберга

Когда прошел восторг первых успехов теории Бора, все вдруг трезво осознали простую истину: схема Бора противоречива. От такого факта некуда было укрыться, и им объясняется тогдашний пессимизм Эйнштейна, равно как и отчаяние Паули.

Физики вновь и вновь убеждались, что электрон при движении в атоме не подчиняется законам электродинамики: он не падает на ядро и даже не излучает, если атом не возбужден. Все это было настолько необычно, что не укладывалось в голове: электрон, который «произошел» от электродинамики, вдруг вышел из-под контроля ее законов. При любой попытке найти логический выход из подобного порочного круга ученые всегда приходили к выводу: атом Бора существовать не может.

Однако природе нет дела до наших логических построений: атомы вопреки всякой логике устойчивы и, насколько мы знаем, существуют вечно. А если законы электродинамики не могут обеспечить устойчивость атома, тем хуже для них, значит, движение электрона в атоме подчиняется каким-то другим законам.

Впоследствии оказалось, что постулаты Бора — это удачная догадка о тогда еще неизвестных, но фундаментальных законах, которые чуть позже назовут законами квантовой механики.

Квантовая механика — это наука о движении электронов в атоме. Она первоначально так и называлась: атомная механика. А Вернер Карл Гейзенберг — первый из тех, кому выпало счастье эту науку создавать.

Весной 1925 года по приглашению Бора Гейзенберг приехал в Копенгаген из Мюнхена, где только что закончил университет под руководством Зоммерфельда. В Дании он сразу же попал в обстановку научных споров, в среду людей, для которых физика стала главным делом жизни. Полгода прошли в работе и бесконечных дискуссиях все о том же: почему электрон — объект электродинамики — не подчиняется ее законам в атоме и в чем причина удивительной силы нелогичных постулатов Бора? Наконец, что означает в этом случае само понятие «движение»?

Наступило лето. В июне заболевший Гейзенберг уехал отдохнуть на остров Гельголанд в Балтийском море. Отдохнуть ему не удалось — там он вдруг понял неожиданную истину: нельзя представлять себе движение электрона в атоме как движение маленького шарика по траектории. Нельзя, потому что электрон не шарик, а нечто более сложное, и проследить движение этого «нечто» столь же просто, как движение бильярдного шара, нельзя. И если эта догадка верна, то, пытаясь проследить траекторию электрона в атоме, мы задаем природе незаконные вопросы вроде тех, которые задавали в древности: «На чем держится Земля?», «Где у нее край?» А немного позднее: «Где у нее верх и низ?»

Гейзенберг утверждал: уравнения, с помощью которых мы хотим описать движение в атоме, не должны содержать никаких величин, кроме тех, которые можно измерить на опыте. А из опытов следовало, что атом устойчив, состоит из ядра и электронов и может испускать лучи, если его вывести из состояния равновесия. Эти лучи имеют строго определенную длину волны и, если верить Бору, возникают при перескоке электрона с одной стационарной орбиты на другую. При этом схема Бора ничего не говорила о том, что происходит с электроном в момент скачка, так сказать «в полете» между двумя стационарными состояниями. А все, и Гейзенберг в том числе, по привычке добивались ответа именно на этот вопрос. Но в какой-то момент ему стало ясно: электрон не бывает «между» стационарными состояниями, такого свойства у него просто нет!

А что есть? Есть нечто, чему он не знал пока даже названия, но был убежден: оно должно зависеть только от того, куда перешел электрон и откуда.

До сих пор, исходя из уравнений электродинамики, все пытались найти гипотетическую траекторию электрона в атоме, которая непрерывно зависит от времени и которую можно задать рядом чисел x1, x2, x3, …, отмечающих положение электрона в моменты времени t1, t2, t3, … Гейзенберг утверждал: такой траектории в атоме нет, а вместо непрерывной кривой X(t) есть набор дискретных чисел Хnk, значения которых зависят от номеров n и k начального и конечного состояний электрона.

Это важное и довольно сложное утверждение можно пояснить простой аналогией. Представьте, что перед вами шахматная доска, по которой ползет муха. При желании можно очень подробно проследить ее путь, если в каждый момент времени t отмечать ее положение x. По этим измерениям вы затем легко сможете начертить кривую X(t), то есть траекторию движения мухи. Если у вас нет такого желания, то вы можете ограничиться только указанием квадратов, которые посетила муха на своем пути. Это тоже даст некую информацию о ее перемещении, но легко сообразить, что с точки зрения классической механики такое описание будет неполным.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука