Однако учесть все мыслимые факторы, влияющие на исход событий, не всегда возможно. Например, в случае с монетой мы никогда не знаем достаточно точно ее начального положения и скорости. А всякое, даже очень небольшое, их нарушение может изменить результат бросания на противоположный. И тогда уже нельзя быть уверенным, что при
Простые примеры, которые мы привели, не объясняют пока, почему так важно понятие вероятности в квантовой механике. Но прежде чем объяснить это, познакомимся хотя бы бегло с основными законами теории вероятностей. Законы случая (несмотря на странное сочетание двух этих слов) такие же строгие, как и всякие другие законы математики. Однако они имеют некоторые непривычные особенности и вполне определенную область применимости.
Например, хотя мы и знаем, что вероятность выпадания герба при бросании монеты равна ½, однако предсказать исход одного отдельно взятого бросания мы не в состоянии. Тем не менее мы легко можем проверить, что при большом числе бросаний герб выпадет примерно в половине случаев, и закон этот выполняется тем точнее, чем больше испытаний мы проведем. В этом и состоит главная особенность закона случайных событий: понятие вероятности применимо к
Очень важно, чтобы события были однотипными, то есть полностью неразличимыми, поскольку только тогда измеренное число — вероятность — можно использовать для оценки каждого отдельного события.
Непривычные особенности законов случая имеют естественное объяснение. В самом деле, бросание монеты — очень непростой процесс. Мы не хотим или не умеем изучать его во всей сложности. Поэтому мы намеренно закрываем глаза на всю его сложность, отказываемся следить за траекторией монеты и хотим знать только конечный результат испытания. Такое пренебрежение к деталям процесса не проходит даром — теперь мы можем
Широко бытует заблуждение, что вероятностное описание движения менее полно, чем строго причинное, классическое, с его понятием траектории. С точки зрения классической механики это действительно так. Однако если мы откажемся от части ее жестких требований (например, от знания начальных координат и импульсов), тогда классическое описание бесполезно. На смену ему приходит вероятностное, и в новых условиях оно будет исчерпывающим, поскольку сообщает нам все сведения о системе, которые мы вообще можем узнать о ней с помощью опыта.
При игре в «орел-решку» мы намеренно не хотим знать начального положения и скорости монеты и целиком полагаемся на волю случая. Несколько другие желания одолевают нас в тире: там мы всегда стремимся попасть в центр мишени. Но, несмотря на это стремление (довольно сильное), мы никогда заранее не знаем, в какое место мишени попадет каждая из пуль. Попадания группируются в довольно правильный овал, который принято называть «эллипсом рассеяния». От чего он зависит?
Очевидно, чтобы все пули, вылетающие из винтовки, попадали всегда в одну и ту же точку мишени, необходимо, чтобы в момент вылета все они имели одни и те же начальные координаты
Ни то, ни другое обычно недостижимо. Поэтому распределение отверстий от пуль на мишени всегда подчиняется законам случая, и можно говорить лишь о вероятности попадания в «десятку» или «девятку» мишени, но никогда нельзя быть уверенным в этом заранее.
Как и при игре в «орел-решку», эту вероятность можно измерить. Допустим, мы произвели 100 выстрелов и 40 раз попали в «десятку», 30 раз — в «девятку», 15 — в «восьмерку» и так далее — до нуля. Тогда
Можно даже построить диаграмму, которая как бы показывает внутреннюю структуру эллипса рассеяния.
Если мы возьмем теперь такую же мишень и вновь 100 раз по ней выстрелим, то расположение отверстий на ней будет совсем другим, чем на первой мишени. Но число попаданий в «десятку», «девятку» и т. д. останется примерно тем же самым, а следовательно, и диаграмма эллипса рассеяния также останется без изменения.
Конечно, для разных стрелков диаграммы различны: для опытного стрелка они уже, для неопытного — шире. Но для каждого отдельного стрелка она остается неизменной, так что опытный тренер по одному виду мишени может установить, кому из его учеников она принадлежит.