Читаем По законам логики полностью

С момента своего возникновения формальная логика была самым тесным образом связана с философией. В течение многих веков логика считалась, подобно этике, эстетике, психологии и др., одной из «философских наук». И только во второй половине XIX века формальная — к этому времени уже математическая — логика отпочковалась, как принято выражаться, от философии. Примерно в это же время от философии отделилась и стала самостоятельной научной дисциплиной и психология. Но если в психологии этот процесс был связан прежде всего с проникновением в нее опыта и эксперимента и сближением ее с другими эмпирическими науками, то в отделении формальной логики решающую роль сыграло проникновение в нее математических методов и сближение с математикой.

Самостоятельность, обретенная формальной логикой, не означала, конечно, того, что она утратила всякую связь с философией. Просто в новую историческую эпоху прежняя связь приобрела другой характер. Математическая логика возникла, в сущности, на стыке двух столь разных наук, как философия, или точнее — философская логика, и математика. И тем не менее взаимосвязь новой логики с философией не только не оборвалась, но, напротив, парадоксальным образом даже окрепла. Обращение к философии является необходимым условием прояснения формальной логикой своих оснований. С другой стороны, использование в философии понятий, методов и аппарата современной логики, несомненно, способствует более ясному пониманию самих философских понятий, принципов и проблем.

Тесная связь современной логики с математикой придает особую остроту вопросу о взаимных отношениях этих двух наук. Среди многих точек зрения, высказывавшихся по этому поводу, были и две крайние, ведущие в общем-то к тому же самому конечному результату — объединению математики и логики в единую научную дисциплину, сведению их в одну науку.

Согласно Г. Фреге, Б. Расселу и их последователям математика и логика — это всего лишь две ступени в развитии той же самой науки. Математика может быть полностью сведена к логике, и такое чисто логическое обоснование математики позволит установить ее истинную и наиболее глубокую природу. Этот подход к обоснованию математики получил название логицизма. Наиболее законченное изложение он нашел в изданном в 1910–1913 годах трехтомном труде «Principia Mathematical написанном Б. Расселом совместно с другим английским математиком и логиком — А. Уайтхедом.

Сторонники логицизма добились определенных успехов в прояснении основ математики. В частности, было показано, что математический словарь сводится к неожиданно краткому перечню основных понятий, которые принадлежат словарю чистой логики. Вся существующая математика была сведена к сравнительно простой и унифицированной системе исходных, принимаемых без доказательства положений, или аксиом, и правил вывода из них следствий, или теорем.

Однако в целом логицизм оказался утопической концепцией. «Математика не выводима из формальной логики, — подводит итог советский математик и логик Д. Бочвар, — ибо для построения математики необходимы аксиомы, устанавливающие факты из области объектов, и прежде всего — существование в последней определенных объектов. Но такие аксиомы обладают уже внелогической природой».


Другой формой объединения математики и логики в одну науку было объявление математической, или современной, логики одним из разделов современной математики. Многие математики и сейчас еще считают главной — если не единственной — задачей математической логики уточнение понятия математического доказательства и исключение парадоксальных, противоречащих интуиции утверждений из математических теорий. «Математическая логика, — пишет, например, английский логик Р. Гудстейн, — имеет своей целью выявление и систематизацию логических процессов, употребляемых в математическом рассуждении, а также разъяснение математических понятий. Сама она является ветвью математики, использующей математическую символику и технику, ветвью, развивающейся в целом в течение последних ста лет, и притом такой, которая по своей плодотворности, по силе и важности своих открытий вполне может претендовать на место в авангарде современной математики».


Тенденция включать математическую логику в число математических дисциплин и видеть в ней только теорию математического доказательства является, конечно, ошибочной. На самом деле задачи логики гораздо шире. Она исследует основы всякого правильного рассуждения, а не только строгого математического доказательства, и ее интересует связь между посылками и следствиями в любых областях рассуждения и познания, а не только в одной лишь математике. Математическая логика, истолкованная исключительно как один из разделов математики, не только лишается способности прояснять и уточнять основания математики, но и сама становится непостижимой.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже