Все существующие в природе атомы представлены в виде башни энергий (или масс), в зависимости от того, где находятся электроны. Поскольку во всех атомах, кроме атома водорода, содержится больше одного электрона, они излучают свет всех цветов радуги и даже более широкого спектра – именно поэтому нас окружает настолько красочный мир. В самом общем виде химия – это область науки, которая изучает процессы, происходящие в тот момент, когда две группы атомов приближаются друг к другу (но не слишком близко). В случае сближения двух атомов водорода протоны отталкиваются, потому что оба несут положительный электрический заряд. Однако такое отталкивание компенсируется тем, что электрон одного атома притягивает протон другого. В итоге создается оптимальная конфигурация, в которой два связанных между собой атома образуют молекулу водорода. Эти атомы связаны между собой в том же смысле, в котором электрон удерживается на своей орбите вокруг ядра атома водорода. Наличие связи между атомами означает, что требуются определенные усилия, чтобы отделить их друг от друга. В данном контексте под «приложить усилия» подразумевается необходимость обеспечить приток энергии. Если нам нужно добавить энергии, чтобы разбить молекулу на части, значит, масса молекулы меньше общей массы двух атомов водорода, из которого она состоит, точно так же как масса атома водорода меньше совокупной массы его составляющих. В обоих случаях энергия связи возникает под воздействием электромагнетизма, о котором шла речь в начале книги.
Как известно каждому, кто проводил время в школьной химической лаборатории с коробком спичек и невнимательным учителем, химическая реакция порой сопровождается выделением энергии. Горящий уголь в камине – прекрасный, хорошо поддающийся контролю пример: достаточно поднести зажженную спичку – и энергия непрерывно вырабатывается на протяжении многих часов. Более драматичный пример – когда взрывающаяся шашка динамита выделяет то же количество энергии, что и камин, но гораздо быстрее. Эта энергия генерируется не под воздействием спички, которой зажигают камин, или запала шашки динамита, а под воздействием энергии, в них содержащейся. Главное, что в случае потери какого-то количества энергии суммарная масса продуктов реакции всегда должна быть меньше исходной массы.
Последний пример может еще лучше проиллюстрировать идею высвобождения энергии в процессе химической реакции. Представьте себе, что вы сидите в помещении, наполненном молекулами водорода и кислорода. В такой среде мы могли бы дышать, и на первый взгляд это может показаться вполне безопасным и комфортным, поскольку, для того чтобы отделить друг от друга два атома в молекуле водорода, необходима энергия. Это позволяет предположить, что молекула водорода должна быть устойчивой субстанцией. Однако такая молекула может быть расщеплена посредством химической реакции, которая генерирует внушительное количество энергии. Причем настолько внушительное, что газообразный водород можно считать весьма опасным веществом. Этот газ легко воспламеняется в воздухе – достаточно буквально искры, чтобы вызвать настоящую катастрофу. Мы можем проанализировать этот процесс чуть подробнее, описывая его на нашем новом языке. Допустим, мы смешаем газ, состоящий из молекул водорода (два связанных между собой атома водорода), с газом, состоящим из молекул кислорода (два связанных между собой атома кислорода)[35]
. А теперь, сидя в своей комнате, вы можете занервничать, узнав, что совокупная масса двух молекул водорода и одной молекулы кислорода больше совокупной массы двух молекул воды, каждая из которых состоит из двух атомов водорода и одного атома кислорода. Другими словами, четыре атома водорода и два атома кислорода, представленные в виде отдельных молекул, имеют б