Читаем Почему E=mc²? И почему это должно нас волновать полностью

Позвольте уточнить, что мы подразумеваем под взаимодействием двух частиц. Мы имеем в виду, что взаимодействие частиц друг с другом оказывает определенное влияние на их движение. Например, две частицы могут разлететься в разные стороны, изменив при этом направление движения. Или могут вращаться друг вокруг друга по орбите, попав в ситуацию, которую физики называют состоянием связи. Атом – один из примеров такого состояния. В случае атома водорода один электрон и один протон связаны друг с другом в соответствии с правилами, сформулированными в основном уравнении. В предыдущей главе мы с вами много говорили об энергии связи, а также о правилах ее расчета для атома, молекулы или атомного ядра, которые отображены в центральном уравнении. В определенном смысле знание правил игры означает, что мы описываем устройство Вселенной на самом фундаментальном уровне. Так каковы же частицы, из которых все состоит, и как они взаимодействуют друг с другом?

В стандартной модели в качестве отправной точки используется факт существования материи. Точнее говоря, эта модель предполагает существование шести типов кварков, трех типов заряженных лептонов (один из которых электрон) и трех типов нейтрино. Вы можете увидеть, как эти частицы вещества появляются в основном уравнении: они обозначены символом Ψ (произносится как «пси»). Кроме того, у каждой частицы есть соответствующая античастица. Антиматерия – это не продукт научной фантастики, а неотъемлемая составляющая Вселенной. В 20-х годах XX века британский физик-теоретик Поль Дирак[46] первым осознал необходимость в антиматерии, когда предсказал существование партнера электрона под названием позитрон, который должен был иметь точно такую же массу, но противоположный электрический заряд. Мы уже встречались с позитронами и знаем их как побочный продукт процесса слияния двух протонов и образования дейтрона. Одна из самых впечатляющих характеристик успешной научной теории состоит в ее способности прогнозировать нечто такое, что прежде было неизвестно. Последующее наблюдение этого «нечто» в ходе эксперимента убедительно подтверждает тот факт, что мы поняли что-то истинное об устройстве Вселенной. Если углубиться в суть вопроса, можно констатировать следующее: чем больше прогнозов способна сделать теория, тем большее впечатление производит ее подтверждение в ходе экспериментов. Напротив, если эксперименты не позволяют обнаружить прогнозируемое явление, то теория не может быть верной и ее необходимо отбросить. В таком интеллектуальном поиске нет места для споров: эксперимент – это последний судья. Звездный час Дирака наступил через несколько лет после того, как Карл Андерсон[47] осуществил первое непосредственное наблюдение позитронов, применив для этого космические лучи. За свой труд Дирак получил Нобелевскую премию в 1933 году, а Андерсон – в 1936-м. Каким бы загадочным ни казался позитрон, в наше время факт его существования подтверждается тем, что он используется в повседневной практике в больницах по всему миру. Использование позитронов в ПЭТ-сканерах (PET, positron emission tomography – позитронно-эмиссионная томография) позволяет врачам составить трехмерную карту организма. Скорее всего, Дирак не думал о диагностической визуализации, когда работал над идеей антиматерии. Это в очередной раз говорит о том, что понимание внутреннего устройства Вселенной приносит людям конкретную пользу.

Предположительно существует еще одна частица, но пока заявлять об этом с абсолютной уверенностью не стоит. Эта частица обозначается греческой буквой ϕ (произносится как «фи») и появляется в третьей и четвертой строках центрального уравнения. За исключением этой «еще одной» частицы все кварки, заряженные лептоны и нейтрино (а также их частицы-партнеры из антиматерии) были обнаружены в ходе экспериментов. Безусловно, их нельзя увидеть человеческим глазом. В последнее время это делается с помощью детекторов частиц, напоминающих фотокамеры с высоким разрешением, которые могут сделать мгновенный снимок элементарной частицы в момент ее мимолетного появления. Во многих случаях открыватели элементарных частиц получали Нобелевскую премию. Последней в 2000 году была обнаружена частица под названием тау-нейтрино. Этот призрачный кузен электронных нейтрино, излучаемых Солнцем в процессе ядерного синтеза, замыкает группу из 12 известных частиц материи.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Неразумная обезьяна. Почему мы верим в дезинформацию, теории заговора и пропаганду
Неразумная обезьяна. Почему мы верим в дезинформацию, теории заговора и пропаганду

Дэвид Роберт Граймс – ирландский физик, получивший образование в Дублине и Оксфорде. Его профессиональная деятельность в основном связана с медицинской физикой, в частности – с исследованиями рака. Однако известность Граймсу принесла его борьба с лженаукой: в своих полемических статьях на страницах The Irish Times, The Guardian и других изданий он разоблачает шарлатанов, которые пользуются беспомощностью больных людей, чтобы, суля выздоровление, выкачивать из них деньги. В "Неразумной обезьяне" автор собрал воедино свои многочисленные аргументированные возражения, которые могут пригодиться в спорах с адептами гомеопатии, сторонниками теории "плоской Земли", теми, кто верит, что микроволновки и мобильники убивают мозг, и прочими сторонниками всемирных заговоров.В формате PDF A4 сохранен издательский макет книги.

Дэвид Роберт Граймс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Психология подросткового и юношеского возраста
Психология подросткового и юношеского возраста

Предлагаемое учебное пособие объективно отражает современный мировой уровень развития психологии пубертатного возраста – одного из сложнейших и социально значимых разделов возрастной психологии. Превращение ребенка во взрослого – сложный и драматический процесс, на ход которого влияет огромное количество разнообразных факторов: от генетики и физиологии до политики и экологии. Эта книга, выдержавшая за рубежом двенадцать изданий, дает в распоряжение отечественного читателя огромный теоретический, экспериментальный и методологический материал, наработанный западной психологией, медициной, социологией и антропологией, в талантливом и стройном изложении Филипа Райса и Ким Долджин, лучших представителей американской гуманитарной науки.Рекомендуется студентам гуманитарных специальностей, психологам, педагогам, социологам, юристам и социальным работникам. Перевод: Ю. Мирончик, В. Квиткевич

Ким Долджин , Филип Райс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Психология / Образование и наука