Читаем Почему мы не проваливаемся сквозь пол полностью

Жидкость стремится по возможности уменьшить свою поверхностную энергию. К примеру, тонкая струя жидкости из только что закрытого крана, достигнув определенного диаметра, непременно разобьется на отдельные капли с меньшей поверхностной энергией. Когда жидкость замерзает, молекулярный характер ее поверхности изменяется мало, и энергия поверхности сохраняется, хотя поверхностное натяжение уже не в силах изменить форму твердой частицы, округлив ее подобно капле. В большинстве твердых тел межатомные связи прочнее и жестче, чем в обычных жидкостях, соответственно и величины поверхностной энергии у них в 10–20 раз выше[22]. Не замечаем же мы поверхностного натяжения в твердых телах не потому, что оно слабое, а потому, что твердые тела слишком жестки, чтобы их форма заметно искажалась силами поверхностного натяжения.

Теперь, подобно тому, как мы стали бы вычислять вес самого большого комара, способного шагать по данной жидкости, попытаемся определить, сколь прочным должен быть тот или иной материал. Начав эти расчеты, основанные на вышесказанном, мы с удивлением обнаружим, что они очень простые.

Попробуем найти напряжение, которое необходимо для разделения в объеме материала двух примыкающих один к другому атомных слоев. Пока нам безразлично, какой материал рассматривать, кристаллический или аморфный. По существу все, что нам нужно знать, - это величины модуля Юнга и поверхностной энергии.

Итак, положим, что два слоя атомов вначале находятся на расстоянии x см один от другого, тогда энергия деформации на квадратный сантиметр при напряжении и деформации может быть найдена следующим образом: 1/2·(Напряжение·Деформация·Объем)=1/x Но по закону Гука E=, то есть = / E.

Заменяя в первом равенстве через / Е, получим Энергия деформации на квадратный сантиметр = 2x/ 2E.

Если G есть поверхностная энергия твердого тела на 1 см2, то общая энергия двух поверхностей, образовавшихся при разрушении, будет 2G на 1 см2.

Теперь предположим, что по достижении нашей теоретической прочности а, вся энергия деформации в объеме между двумя слоями атомов переходит в поверхностную энергию, то есть *2x/2E = 2G Отсюда *= (GE/x)1/2.

Правда, мы немного завысили теоретическую прочность, так как предполагали, что материал подчиняется закону Гука вплоть до разрушения. Ведь в предыдущей главе мы видели, что закон Гука верен лишь для малых деформаций, а при больших деформациях кривая зависимости межатомной силы от деформации отклоняется вниз от прямой. Поэтому энергия деформации будет меньше найденной нами энергии, грубо говоря, вдвое. Чтобы учесть это, мы просто опустим двойку в выведенной нами формуле, имея в виду, что мы не претендовали на получение точной величины прочности. Следовательно, правдоподобную оценку прочности материала должно давать выражение *= 2(GE/x)1/2 проще которого едва ли что можно придумать.

Теперь применим эту формулу к стали, типичными величинами для которой будут: поверхностная энергия G= 1000 эрг/см2, модуль Юнга E= 2x1012 дин/см2, межатомное расстояние х = 2x10-8 см.

Подставив эти значения в формулу, получим прочность около 3x1011 дин/см2, то есть примерно 3000 кг/мм2, что составляет около E/6, Прочность обычной стали - около 50 кг/мм2, прочность специальной проволоки может быть 300 кг/мм2.

Так как величины Е и G для разных твердых тел различны, мы получим для них и различные значения теоретической прочности. Единственное, что будет роднить эти числа, - все они намного превысят значения прочности, которые нам дают реальные материалы. Пожалуй, сталь составляет исключение в этом смысле: реальная прочность некоторых сортов стали достигает все-таки 1/10 от вычисленной прочности; огромное большинство твердых тел имеет всего сотую или даже тысячную долю теоретической прочности.

Лет 30–40 назад никто не рискнул бы публично усомниться в этих вычислениях. Ведь в таком случае нужно было бы дать объяснения, откуда берется энергия вновь образованных поверхностей. Почему-то серьезно за это никто не брался. Где-то что-то было не так, и, пожалуй, рассуждали многие, лучше об этом поменьше говорить.

Перейти на страницу:

Похожие книги

MMIX - Год Быка
MMIX - Год Быка

Новое историко-психологическое и литературно-философское исследование символики главной книги Михаила Афанасьевича Булгакова позволило выявить, как минимум, пять сквозных слоев скрытого подтекста, не считая оригинальной историософской модели и девяти ключей-методов, зашифрованных Автором в Романе «Мастер и Маргарита».Выявленная взаимосвязь образов, сюжета, символики и идей Романа с книгами Нового Завета и историей рождения христианства настолько глубоки и масштабны, что речь фактически идёт о новом открытии Романа не только для литературоведения, но и для современной философии.Впервые исследование было опубликовано как электронная рукопись в блоге, «живом журнале»: http://oohoo.livejournal.com/, что определило особенности стиля книги.(с) Р.Романов, 2008-2009

Роман Романов , Роман Романович Романов

История / Литературоведение / Политика / Философия / Прочая научная литература / Психология
Никола Тесла — повелитель молний. Научное расследование удивительных фактов
Никола Тесла — повелитель молний. Научное расследование удивительных фактов

Что скрывается за таинственными изобретениями Николы Теслы? Как был связан великий изобретатель с загадкой исчезновения эсминца «Элдридж» в ходе филадельфийского эксперимента? Что за таинственные опыты ставили последователи Николы Теслы на заброшенной базе ВВС в Монтауке? Эти и многие другие захватывающие воображение вопросы автор рассматривает через призму самых последних достижений науки и техники. Книга написана в виде сборника популярных очерков — расследований темных пятен биографии выдающегося электротехника и изобретателя Николы Теслы.Книга предназначена для самого широкого круга читателей, интересующихся секретами военно-научных исследований.

Олег Орестович Фейгин

Альтернативные науки и научные теории / Прочая научная литература / Образование и наука
Металлы и человек
Металлы и человек

Эта книга рассказывает о металлах. И о таких широкоизвестных, как железо, медь, алюминий, и о тех, даже названия которых приходилось слышать не всем: церий, гадолиний, тантал.Вы сможете прочесть здесь и о волшебных свойствах юного соперника железа — титана, и об уране — новом топливе для электростанций, и о вольфраме — самом прочном и самом тугоплавком в семействе металлов. В общем — обо всех восьмидесяти металлах, которые существуют в природе.Вместе с тем это книга и о человеке, о его великой власти над металлами. Ведь это человек превращает ржавые камни, руду в металлические изделия.Это он собрал, в иных случаях буквально по атому, первые крупинки редких и рассеянных элементов и открыл их удивительные свойства. Он облагородил металлы: сделал сталь нержавеющей, слабый алюминий — прочным, желтое золото — разнообразным по цвету. Это человек нашел металлам бесчисленное применение — для сооружений высотных зданий и газопроводов, космических ракет и вагонов метро, для сшивания кровеносных сосудов и превращения солнечных лучей в электрический ток…Книга эта рассказывает и о борьбе советского народа за металл, о наиболее прогрессивных методах получения и обработки металлов, о важности их экономии и рационального использования.Книга написана очень популярно. Она рассчитана на то, чтобы ее с пользой для себя прочитал каждый интересующийся современной наукой и техникой и перспективами их развития.

Михаил Васильевич Васильев

Металлургия / Прочая научная литература / Образование и наука
Все лучшее, что не купишь за деньги
Все лучшее, что не купишь за деньги

Жак Фреско рисует образ глобальной цивилизации, в которой достижения науки и техники применяются с учетом нужд человека и экологии с целью обезопасить, защитить и обеспечить существование более гуманного мира для всех людей и содействовать его процветанию. Эта книга предлагает возможный выход из циклично повторяющихся экономических подъемов и рецессий, голода, бедности, ухудшения состояния окружающей среды и территориальных конфликтов, где мир — просто пауза между войнами. В общих чертах книга представляет реальный гуманный социальный дизайн цивилизации ближайшего будущего, в которой права человека будут не просто декларированы на бумаге, а станут образом жизни. Книга «Все лучшее, что не купишь за деньги» — это призыв ко всем нам строить общество, в котором все глобальные ресурсы станут общечеловеческим наследием.

Жак Фреско , Роксана Медоуз

Философия / Экология / Прочая научная литература / Образование и наука