Жидкость стремится по возможности уменьшить свою поверхностную энергию. К примеру, тонкая струя жидкости из только что закрытого крана, достигнув определенного диаметра, непременно разобьется на отдельные капли с меньшей поверхностной энергией. Когда жидкость замерзает, молекулярный характер ее поверхности изменяется мало, и энергия поверхности сохраняется, хотя поверхностное натяжение уже не в силах изменить форму твердой частицы, округлив ее подобно капле. В большинстве твердых тел межатомные связи прочнее и жестче, чем в обычных жидкостях, соответственно и величины поверхностной энергии у них в 10–20 раз выше[22]. Не замечаем же мы поверхностного натяжения в твердых телах не потому, что оно слабое, а потому, что твердые тела слишком жестки, чтобы их форма заметно искажалась силами поверхностного натяжения.
Теперь, подобно тому, как мы стали бы вычислять вес самого большого комара, способного шагать по данной жидкости, попытаемся определить, сколь прочным должен быть тот или иной материал. Начав эти расчеты, основанные на вышесказанном, мы с удивлением обнаружим, что они очень простые.
Попробуем найти напряжение, которое необходимо для разделения в объеме материала двух примыкающих один к другому атомных слоев. Пока нам безразлично, какой материал рассматривать, кристаллический или аморфный. По существу все, что нам нужно знать, - это величины модуля Юнга и поверхностной энергии.
Итак, положим, что два слоя атомов вначале находятся на расстоянии
Заменяя в первом равенстве через /
Если
Теперь предположим, что по достижении нашей теоретической прочности а, вся энергия деформации в объеме между двумя слоями атомов переходит в поверхностную энергию, то есть *2
Правда, мы немного завысили теоретическую прочность, так как предполагали, что материал подчиняется закону Гука вплоть до разрушения. Ведь в предыдущей главе мы видели, что закон Гука верен лишь для малых деформаций, а при больших деформациях кривая зависимости межатомной силы от деформации отклоняется вниз от прямой. Поэтому энергия деформации будет меньше найденной нами энергии, грубо говоря, вдвое. Чтобы учесть это, мы просто опустим двойку в выведенной нами формуле, имея в виду, что мы не претендовали на получение точной величины прочности. Следовательно, правдоподобную оценку прочности материала должно давать выражение *= 2(
Теперь применим эту формулу к стали, типичными величинами для которой будут: поверхностная энергия
Подставив эти значения в формулу, получим прочность около 3x1011 дин/см2, то есть примерно 3000 кг/мм2, что составляет около
Так как величины
Лет 30–40 назад никто не рискнул бы публично усомниться в этих вычислениях. Ведь в таком случае нужно было бы дать объяснения, откуда берется энергия вновь образованных поверхностей. Почему-то серьезно за это никто не брался. Где-то что-то было не так, и, пожалуй, рассуждали многие, лучше об этом поменьше говорить.