Читаем Почему мы не проваливаемся сквозь пол полностью

Когда мы обращаемся к более распространенным кристаллическим материалам, в цепи наших рассуждений появляется еще одно звено. Можно, конечно, действуя подобно Дэшу, получить довольно большой монокристалл, но, как правило, каждый отдельный кристалл в наших обычных материалах достаточно мал. Усы - это все-таки исключительные по своим свойствам малые монокристаллы. Обычно же твердые тела больших размеров являются поликристаллами: можно сказать, что они собраны из большого числа малых кристалликов, примыкающих друг к другу в трех измерениях, подобно булыжникам мостовой или областям на географической карте. Форма отдельных кристаллов может быть весьма неправильной, они примыкают один к другому по границам обычно очень плотно, в чистых материалах контакт на молекулярном уровне достаточно хороший. Вообще говоря, поверхностная энергия этих границ выше, чем энергия поверхностей разрушения в кристаллах, и поэтому в достаточно чистых материалах "границы зерен" не являются источником низкой прочности.

Другое дело - материалы с большой концентрацией примесей. Хорошо известно, что, когда жидкость замерзает, в процессе кристаллизации растущие кристаллы стремятся изгнать из своего объема примеси. Например, лед, образовавшийся из соленой воды, при таянии дает достаточно пресную воду (что очень удобно для полярников). Этот процесс приводит к тому, что примеси в твердых телах накапливаются по границам зерен. Здесь же собираются и вакансии, то есть поры атомных размеров. Все это может превратить границы зерен в поверхности разрушения. Именно из-за этого небольшая добавка неподходящей примеси может разрушить сплав. Иногда понижение прочности дает положительный эффект. Рассмотрим, например, что дает добавление антифриза к воде, охлаждающей двигатель автомобиля. Основной смысл этой операции состоит в том, что гликоль, существенно понижая точку замерзания полученной смеси, оттягивает неприятности, но, если все-таки смесь замерзнет, лед получается пористым, лишенным механической прочности и вряд ли способен сильно навредить машине.

Однако для большинства достаточно чистых кристаллических тел границы зерен довольно прочны и поведение твердых хрупких материалов можно сравнить с поведением усов и других монокристаллов, а последнее, как мы видели, очень похоже на поведение стекла. В обоих случаях проблема прочности и разрушения почти исключительно связана с гладкостью поверхности. Для стекла определяющим дефектом обычно является поверхностная трещина, для хрупких кристаллов - ступенька на поверхности. Наличие внутренних дефектов в хрупком кристалле имеет меньшее значение.

Как мы увидим дальше, для пластичного мягкого материала существует совершенно другая проблема.

Дислокации и пластичность

Вещества, с которыми мы имели дело до сих пор, считаются в технике хрупкими. Это не значит, конечно, что они рассыпаются на куски при первом же прикосновении. Нет, мы уже видели, что некоторые из них очень прочны. Абсолютного деления на хрупкие и пластичные вещества нет, но, вообще говоря, хрупкие тела имеют достаточно хорошо определенные свойства. Если не считать небольших упругих изменений, которые исчезают после снятия нагрузки, хрупкие тела не деформируются перед разрушением, и причиной их разрушения является то, что одна или несколько трещин пробегают через весь материал. Обломки хрупких тел после разрушения можно очень хорошо подогнать друг к другу; например, можно довольно искусно склеить разбитую вазу. В пластичных материалах, например в мягкой стали, перед разрушением наблюдаются большие необратимые искажения формы, так что из получившихся после разрушения кусков нельзя уже сложить первоначальный предмет.

Хрупкие вещества, которыми мы пользуемся в повседневной жизни, - стекло, фаянс, кирпич, бетон, некоторые пластмассы - вполне удовлетворяют нас. Однако для изготовления различного рода машин мы обычно предпочитаем пластичные металлы. Хрупкие тела разрушаются путем полного разделения двух соседних слоев атомов или молекул под растягивающим напряжением, остальной объем материала при этом не нарушается. Поведение металла напоминает в чем-то поведение пластилина. Еще до разрушения, то есть до разделения образца на две части, в объеме материала развивается интенсивное течение, подобное течению вязкой жидкости. В это время соседние атомные слои, не разделяясь, сдвигаются друг относительно друга подобно колоде карт.

Перейти на страницу:

Все книги серии В мире науки и техники

Похожие книги