Как уже говорилось, все эти металлы в чистом состоянии очень мягкие, и задача металловедов состоит в том, чтобы поднять их прочность и твердость, не допуская чрезмерного охрупчивания. Если судить по деформации, успехи металловедения отличаются удивительным постоянством. Обычно максимальная упругая деформация, которую можно получить на металле без придания ему недопустимой хрупкости, колеблется около 1%. Однако в большинстве случаев инженеры считают металлы в таком состоянии малопластичными и потому малопригодными и, как правило, вынуждены ограничиться максимальной упругой деформацией между 0,25 и 0,5%, тогда , как остаточное удлинение может доходить до 50-60%.
Следовательно, весьма приближенно все металлы можно считать членами одного семейства с очень схожими удельными жесткостями, удельными прочностямн и удлинениями. Конечно, это очень грубое обобщение, и уж совсем не так стоит вопрос для металловедов, которые упорно продолжают предпринимать попытки получить лучшие комбинации удельной прочности и вязкости (с удельной жесткостью ничего не поделаешь), хотя возможности их здесь довольно ограниченны. Металловеды достигли успехов в попытках сохранить прочность с повышением температуры. Во многих случаях это важнее, чем повышение прочности при комнатной температуре.
Нет нужды описывать здесь специальные металлургические процессы и различные виды обработки всех металлов и сплавов. На эту тему написано множество книг. Однако огромная социальная и техническая значимость железа и стали заставляет рассказать о них немного подробнее. Приступая к делу, я слишком хорошо отдаю себе отчет в размерах и трудностях этого предмета. Возможно перед началом я должен принести какую-то жертву Гефесту, кузнецу и оружейнику Олимпа, единственному технологу, принятому в круг главных богов.
Железо
Прочность железа и стали определяется чрезвычайно сильным влиянием углерода, содержащегося в кристалле железа, на движение дислокаций. Конечно, дислокационные явления оказались понятными лишь совсем недавно. Да что там дислокации, даже сравнительно простая химия процесса получения железа из руды была осознана к концу периода промышленной революции. Однако практическая металлургия железа была разработана и без этого, и сейчас она во многом остается традиционным процессом. Подобно тому как текстильное дело с его прядением и ткачеством уходит в доисторические времена, а вклад современных фабрик сводится к механизации и рационализации простых ручных операций, так и производство стали основано сейчас на усложненных схемах, которые сами по себе существуют с незапамятных времен. Именно поэтому процессы черной металлургии лучше всего понимаются на историческом фоне.
Величайшая трудность древних металлургов (исключая, конечно, их научное невежество) была связана с получением достаточно высокой температуры в печи. Современное металлургическое оборудование дает в руки металлурга высокую и регулируемую температуру. Это сокращает время получения металлов и сплавов, так как позволяет объединять в один процесс несколько операций. Естественно, сейчас и масштабы другие. Современная печь может дать тысячу тонн стали в день, тогда как средневековый мастер был бы доволен, получив килограммов пятьдесят металла.
Не в пример бронзе, которая может плавиться при 900-1000° C, что как раз обеспечивают обыкновенные дрова, чистое железо плавится при 1535° C, а эта температура веками лежала за пределами технических возможностей. Однако уже довольно малые добавки углерода значительно понижают температуру плавления железа, а углерод всегда под рукой - ведь для нагрева руды использовали в качестве топлива древесный уголь. Самая низкая температура плавления, достижимая на этом пути, - около 1150° C, она получается, когда 4-4,5% углерода продиффундировало (то есть просочилось) в металл
[46]. Достижение такой температуры представляло определенные трудности для древних, но все же ее можно было получить на древесном угле, поддувая в него воздух мехами.Железные руды состоят в основном из окислов железа; чаще всего встречается красный железняк Fe
2O3. Между прочим, окислы железа используются в красках (охра, железный сурик, мумия).Первое, что необходимо сделать с рудой, - удалить кислород. Если нагревать руду с помощью древесного угля или кокса, это получается почти автоматически: 3Fe
2O3 + 11С → 2Fe3C + 9CO.Кислород вместе с частью углерода уходит прочь в виде окиси углерода (угарного газа), оставляя карбид железа, называемый обычно цементитом (в нем содержится 6,7% углерода). На практике вместе с первой идет и другая реакция: Fe
2O3 + ЗС → 2Fe + 3CO.Таким образом получается также и некоторое количество чистого железа, в конце процесса мы имеем смесь железа и карбида железа, содержащую в целом около 4% углерода. Железо и карбид могут взаимно растворяться, и именно этот раствор, имеющий низкую температуру плавления, был ключом того процесса, который использовали древние для получения железа. Он же идет и в современной домне.