Наконец, если данный полимер по каким-то существенным свойствам недостаточно хорош для одежды, почему бы не попробовать синтезировать другой, лучший? Вроде бы сегодня химику и карты в руки — не то, что нашим предкам, перебирающим тысячи растений прежде чем остановиться на немногих приемлемых. Число новых полимерных соединений, синтезированных в наш век, исчисляется, пожалуй, десятками тысяч. Названия некоторых из них общеизвестны. Например, лавсан. Слово это образовано из начальных букв: лаборатория высокомолекулярных соединений Академии наук. Возглавлял работы по созданию лавсана лауреат Ленинской премии академик Василий Владимирович Коршак. Аналогичный представитель полиэфирных полимеров в Америке именуется дактор, в Японии — тетерен, в Польше — элан. В Великобритании Уинфельд, которого мы недавно цитировали, одним из первых получил полиэфирное волокно терилен.
Если опустить сотни фирменных названий синтетики, то все сведется буквально к пяти-шести видам химических волокон, вошедших в мир костюма. К упомянутым капрону и лавсану можно добавить полихлорвинил-хлорид, полипропилен, полиуретан, и это все или почти все. Отчего так мало? Как ни парадоксально на первый взгляд, но по той же причине, по которой так ограничен выбор подходящих текстильных волокон в живой природе. Утешительно то, что сегодня мы знаем, почему это так. Потому что конкурс на волокнообразующие полимеры — кандидатуры в ряды текстильных нитей — предъявляет весьма высокие и разнообразные требования. Здесь и достаточная гибкость макромолекул, и «регулярность структуры», и «узкое молекулярно-массовое распределение», и наличие полярных и реакционноспо-собных групп, одним словом, комплекс критериев, понятных специалистам.
Но и те химические волокна, которые удалось получить в XX веке, весьма заметно потеснили натуральные. Нет, потеснили — не совсем хорошо сказано, верней будет: дополнили. Мы видели на примерах природных материалов, что каждый хорош по-своему, это с полным основанием можно отнести и к разным видам синтетики. А вообще, говоря о химических и природных волокнах, следует рассматривать их не как конкурентов, а, напротив, отметить разностороннее содружество, если можно так выразиться. Содружество па разных уровнях.
ВОЛОКНИСТОЕ СОДРУЖЕСТВО
Недлинные волокна вискозы, именуемые штапельными, образуют с хлопковым волокном смешанную, точ-ией — объединенную нить. Для чего? Для того чтобы сочетались отличные свойства хлопка и также отличные, но уже в другом плане — вискозы. Так получается, к примеру, легкая, прочная, необычайно износостойкая и вдобавок «скользкая» подкладочная ткань. Можно привести и другие примеры оригинального применения новых и традиционных материалов. Ацетатное волокно, помимо того, что пропускает ультрафиолетовые лучи, обнаружило не менее замечательную способность — делаться эластичным. И без такого волокна не было бы незаменимого теперь эластика.
Известно, что льняная ткань легко мнется, образуя множество произвольных складок. А приобретая одежду из материала «лен с лавсаном», можно быть уверенным, что складка станет держаться именно там, где она намечена модельером. И не потребуется каждодневная утюжка, разглаживание. Эмблема старейшего в стране Ивановского камвольного комбината, выпускающего шерстяные ткани, — летящие лебеди, белый и черный. Она символизирует лебяжью нежность и вместе с тем выносливость — что вполне может быть отнесено к выпускаемым тканям. Не «чисто шерстяные» — и такие ткани все-таки со временем изнашиваются, деформируются. Специалисты разработали оптимальный состав материала ткани: 40 процентов натуральной шерсти, 30 процентов лавсана и 30 — вискозы.
Идея сочетания разных волокон в одежде родилась не в XX веке. Остатки материй древних свидетельствуют о том, что нередко в одной ткани соединялись шерстяные, льняные или шелковые, хлопковые нити. И сегодня, скажем, в ткани «согдиана», названной так в честь страны древности, связанной с шелком, сходятся нити натурального шелка и вискозного. А в «кудеснице» таким же образом встречаются шелка вискозный и ацетатный.
Знаменательны пробы «породнить» исходные материалы на более низких уровнях, нежели собственно в ткани.
На молекулярном: вспомним, как в молекуле целлюлозы «прищепливают» акрилонитрил-«веточку» иного полимера, тоже волокнообразующего. Только в микроскоп можно рассмотреть рассыпанные вперемешку кружочки и звездочки — знаки совместного прядения и кручения ацетатного волокна и найлонового. А уж когда биокомпонентные волокна совместно проходят одну фильеру, то опять же под микроскопом, в поляризованном свете красные и зеленые волны выдают тайну смеси, как будто бы вполне однородной.