В своих рассуждениях о математике Пенроуз находится под влиянием австрийского логика Курта Гёделя, который доказал, что внутри любой математической системы всегда найдется утверждение, суждение об истинности которого для нас
В 1960 году лауреат Нобелевской премии по физике, специалист по квантовой механике Юджин Вигнер, работавший в Принстонском университете, написал известную статью о таинственной и необъяснимой природе связи математики с физикой и другими естественными науками. Сам Вигнер внес большой вклад в физику, используя сложный и изощренный математический аппарат. В частности, вместе с Германом Вейлем он стал первопроходцем в применении абстрактной математической
Симметрия, в частности, позволила другому американскому нобелевскому лауреату Стивену Вайнбергу предсказать существование одной частицы и массы покоя двух других частиц: так называемых Z– и W-бозонов, которые играют важную роль в радиоактивном распаде ядер. Представляется поразительным сам факт того, что чисто математическая теория групп смогла точно предсказывать физические явления. Природа связи между математической теорией групп и физикой была установлена немецким математиком еврейского происхождения Эмми Нётер, которая приехала в Америку накануне Второй мировой войны, спасаясь от нацизма. Она доказала две важнейшие теоремы, установившие связь между математической симметрией групп и важнейшими физическими законами сохранения (например, законом сохранения энергии, который гласит, что энергию нельзя ни создать, ни уничтожить).
В своей статье, вышедшей в 1960 году, он поражался таинственной связи между математикой и естественными науками. Вигнер рассказывает историю о двух друзьях детства, встретившихся через несколько десятилетий после долгой разлуки. Один из них стал статистиком и принялся с гордостью рассказывать другу о своих достижениях. Рассказывая о кривой гауссова (иначе называемого нормальным) распределения, он показал другу, как делаются выводы о больших группах населения на основе небольших выборок. Друг, изо всех сил стараясь понять собеседника, ткнул пальцем в символ, следовавший за гауссовым интегралом. «Что это?» – спросил он. «О, это пи, – ответил статистик, – отношение длины окружности к ее диаметру». Друг был изумлен до глубины души. «Пи? Но какое отношение имеет население к длине окружности?»
Вигнер приводит эту историю, как пример непостижимой эффективности математики в тех случаях, когда некоторые ее закономерности (например, константа, определяющая длину окружности), по видимости, не имеют отношения к изучаемому явлению. Тем не менее эта связь есть! Мало того, гауссова кривая примечательна и в других отношениях: мы до сих пор не знаем, как интегрировать эту функцию (мы можем интегрировать ее лишь численно, с помощью компьютера, но не в общей форме, как происходит с другими функциями). Получилось так, что эту важнейшую функцию теории вероятностей мы не можем анализировать с помощью интегрального исчисления Ньютона и Лейбница.
Теорию вероятностей применяют во многих отраслях науки, и ученым, для того чтобы по-настоящему заниматься своим делом, надо хорошо ее знать. В книге «Бог как иллюзия» Ричард Докинз дает следующее ничем не обоснованное высказывание: «Гипотеза Бога… практически исключается законами вероятности». Через несколько страниц, процитировав Гексли, Докинз пишет: