Говорят, у Кантора был такой восприимчивый ум, что он мог в каком-то смысле «видеть» бесконечность. Он стал первым математиком в истории человечества, который в одиночку по-настоящему выявил ее глубинные свойства. Он смог доказать, что не все бесконечные множества одинаково велики. Например, число целых чисел, хотя оно и бесконечно велико, все же
Действительные числа расположены «бесконечно плотно». Между любыми двумя из них, независимо от того, насколько близко друг к другу они расположены, находится бесконечное множество других чисел. Ни у одного числа нет «следующего» за ним, так как если вы выберете такое «следующее число», то сможете поместить между ним и «предыдущим» бесконечное число других чисел.
Теперь мы видим, что идея бесконечной мультивселенной, столь любимая новыми атеистами, является совершенно абсурдной. Понятие о существовании мультивселенной используется для того, чтобы «найти» единственную Вселенную в этом бесконечном множестве, которая совершенно случайно удовлетворяла бы требованиям, необходимым для существования жизни (так как мы знаем, что параметры нашей Вселенной очень хорошо для этого подходят). По этой причине нам необходим континуум параметров, из которых можно выбирать наши, поскольку параметры Вселенной являются «точными» числами (например,
Но где
Кантору часто досаждали менее одаренные математики, находившие его труды абсолютно неправдоподобными. Непрерывные нападки усугубили течение душевного недуга. Ученый постоянно страдал от повторявшихся приступов депрессии, из-за которых попадал в психиатрические лечебницы, где был вынужден находиться по несколько месяцев, после чего ему постепенно становилось лучше. Вся жизнь Кантора прошла в таких неблагоприятных условиях, когда периоды творчества сменялись длительными периодами госпитализации и вынужденного отдыха.
Конфликт, кроме того, принял и религиозную окраску. Главным противником Кантора был берлинский математик Леопольд Кронекер, который изводил Кантора излюбленной фразой: «Бог создал целые числа, а все остальные – человек!» Кронекер не верил, что существуют такие числа, как
Сегодня понятно, что труды Кантора отличались безупречной корректностью и подлинным новаторством, они открыли важный новый путь к познанию бесконечности. Но при всем успехе идей Кантора было одно затруднение, которое даже он не смог преодолеть, – проблема «гипотезы континуума», гласящей, что нет такого множества, мощность которого находится строго между мощностью множества целых чисел и мощностью множества действительных чисел. Доказательство этой гипотезы могло бы ответить на вопрос о том, как много уровней бесконечности находится между бесконечностью множества целых чисел и бесконечностью множества всех чисел прямой действительных чисел.