Имя английского физика Уильяма Томсона, более известного как лорд Кельвин, знакомо практически каждому жителю Земли благодаря введенной им абсолютной шкале температуры — шкале Кельвина — и, соответственно, градусам Кельвина. Однако не это сделало его одним из самых выдающихся и авторитетных физиков XIX века. Как писал Эйнштейн, «одаренный богатой фантазией, редким умением применять математический аппарат и проникновенным умом, Томсон около 60 лет участвовал в развитии физики и различных отраслей техники, добыв множество результатов, сохранивших свое значение до сегодняшнего дня; немногие ученые были столь же плодотворны».
Работы Уильяма Томсона относятся к термодинамике, одним из основоположников которой он является, гидродинамике, электромагнетизму, упругости, математике. Очень много сделал Томсон в практической физике и в технике — он изобрел или улучшил множество приборов, вошедших во всеобщее употребление. К концу своей долгой жизни Томсон зарегистрировал 70 патентов и опубликовал более 600 научных работ. За деятельность, связанную с прокладкой трансатлантического кабеля, Уильям Томсон в 1866 году был возведен в дворянское достоинство, а в 1892 году королева Виктория пожаловала ему пэрство с титулом «барон Кельвин».
В 1884 году Уильям Томсон выступил в США с циклом лекций перед избранной аудиторией, состоявшей в основном из американских физиков. Позднее Томсон расширил и дополнил эти лекции, и они были изданы в 1904 году под названием «Балтиморские лекции». Однако еще раньше — в 1901 году — одна из лекций была опубликована как отдельная статья в «Philosophical Magazine». В этой статье Томсон проанализировал фотометрический парадокс в рамках модели свободной от поглощения, однородной статической Вселенной и предложил его первое
Сначала Томсон, используя подход, аналогичный описанному в п. 1.2, оценивает относительную долю небесной сферы , закрываемую изображениями звезд, равномерно распределенных внутри сферы радиуса
где
Последняя формула примечательна своей простотой и наглядностью. Из нее сразу следует, что яркость звездного неба (не фона неба, а неба в целом) может быть записана просто как
Далее Томсон переходит к количественным оценкам. Он берет характеристики нашей звездной системы, примерно соответствующие модели Галактики Вильяма Гершеля, —
Для того чтобы при сохранении средней пространственной плотности звезд увеличить а, например, до 0.04 (то есть 4 % небесной сферы будет покрыто изображениями звезд), необходимо увеличить радиус звездной системы в 100 миллиардов раз, то есть он должен быть равен 3x1027 км. Свет будет преодолевать это расстояние примерно за 3x1014 лет. Однако, как отмечает Томсон, существуют неоспоримые динамические аргументы в пользу того, что Солнце может существовать как светящийся объект лишь несколько десятков миллионов лет[9].
Если допустить, что все звезды светят в течение 100 млн лет, то время, в течение которого свет от внешних областей нашей воображаемой сферы добирается до Земли, будет в 3 миллиона раз превышать время жизни звезд. Следовательно, для того чтобы вся небесная сфера была заполнена излучением, необходимо предположить, что приход излучения от звезд, находящихся на разных расстояниях от Земли, синхронизирован — чем дальше от нас звезда, тем раньше она зажглась. Это, конечно, невозможно, поскольку означало бы выделенность положения Земли во Вселенной.
Кроме того, заключает Томсон, предположение о том, что звезды распределены однородно с одинаковой плотностью за пределами нашей звездной системы, конечно, необоснованно. В сфере с радиусом большим, чем наша Галактика, плотность звезд должна быть гораздо меньше и, в итоге, практически нет никакой возможности сделать так, чтобы значение (то есть величина относительной яркости неба) превышала 10-12 или 10-11.