Используется и слабое гравитационное линзирование, влияние которого выделяется при статистическом анализе множества изображений. Например, при отсутствии близкой концентрации массы ориентация далеких, фоновых галактик должна быть хаотической. Если же такая масса присутствует, она приведет к изменению видимых вытянутостей галактик и к появлению некоторой упорядоченности в их ориентациях. С использованием такого подхода удалось даже построить крупномасштабные карты распределения скрытой массы. Например, на рис. 35 показана первая такая трехмерная карта. На рисунке видно, что темная материя, в среднем, хорошо отслеживает распределение видимого вещества, хотя имеются и определенные отличия. В целом слабое гравитационное линзирование дает результаты о скрытой массе, согласующиеся с получаемыми другими методами.
Рис. 35. Наверху: спроецированное распределение галактик в области проекта COSMOS (1600 кв. градусов) (слева) и распределение скрытой массы, построенное методом слабого гравитационного линзирования (справа). Внизу: трехмерное распределение темной материи в той же области. На нижнем рисунке красное смещение увеличивается слева направо от z = 0 до z ~ 1. (По данным Масси и др. 2007)
Есть и другие наблюдательные свидетельства присутствия во Вселенной значительного количества темной материи, однако существуют и теоретические аргументы. По-видимому, первым из них явилось высказанное в 1973 году Острайкером и Пиблсом соображение, что без массивных темных гало диски спиральных галактик должны быть неустойчивыми. Однако самым важным является то, что без скрытой массы галактики вообще не смогли бы образоваться! По современным представлениям галактики формируются и растут за счет гравитационной неустойчивости из исходных возмущений плотности в ранней Вселенной. Как мы убедились в параграфе о реликтовом излучении, через 400 000 лет после начала космологического расширения эти флуктуации плотности были еще очень малы — всего лишь ~10-5. Оказывается, что если бы во Вселенной было только обычное (так называемое барионное)[23] вещество, из которого состоят звезды и галактики, то эти неоднородности просто не успели бы усилиться до такой степени, чтобы создать окружающее нас разнообразие структур! Решением этого парадокса является учет наличия во Вселенной значительного количества небарионной скрытой массы. Фотоны реликтового излучения взаимодействуют лишь с барионным веществом, и поэтому анизотропия фонового излучения несет информацию только о флуктуациях обычной материи. Небарионное вещество на момент рекомбинации могло быть скучено уже гораздо сильнее, подготовив «затравки» для роста будущих галактик и их скоплений.
Сколько во Вселенной «обычного» и «темного» вещества? О количестве (или о плотности) вещества в космологии принято говорить в терминах так называемой критической плотности. Критическая плотность зависит от современного значения постоянной Хаббла (