Читаем Почему небо темное. Как устроена Вселенная полностью

Антропный принцип обычно связывают с именем английского астрофизика Брэндона Картера. В 1974 году он предложил это название для утверждения, что то, что мы ожидаем получить из наблюдений, должно удовлетворять условиям, необходимым для присутствия человека в качестве наблюдателя. Скажем, мы не можем ожидать, что получим из наблюдений, что нейтрон в два раза легче протона, поскольку это противоречит существованию атомов и молекул и, следовательно, жизни нашего типа. Картеру принадлежит удачное название, однако он не был первооткрывателем самого принципа. В разном обличье эти соображения высказывались и использовались задолго до него. Например, Эдгар По использовал сходные рассуждения для обоснования большого размера и возраста Вселенной (см. предыдущую главу). Дух антропного принципа можно усмотреть и в построениях Людвига Больцмана, описавшего огромную Вселенную, в которой то тут, то там возникают гигантские статистические флуктуации, условия в которых очень сильно отличаются от средних. Если в какой-либо флуктуации существуют мыслящие существа, то они обнаружат, что их существование связано с крайне маловероятными условиями, сложившимися в пределах флуктуации и сильно отличающимися от окружающих областей Вселенной. В 1960-е годы четкие формулировки антропного принципа высказали советский космолог А. Л. Зельманов и американец Роберт Дикке.

Что нам дает антропный принцип? Как ни странно, у столь общего утверждения, есть вполне конкретные достижения. Например, я уже упоминал, что Стивен Вайнберг задолго до результатов групп Перлмуттера и Шмидта использовал его для обоснования большого значения космологической постоянной. Замечательным применением антропного принципа (по крайней мере так об этом пишут во многих учебниках по космологии) считают и предсказание Фредом Хойл ом в 1953 году существования энергетического уровня ядра углерода с энергией возбуждения 7.65 МэВ. Без этого уровня углерод образовывался бы в звездах гораздо менее эффективно, и наша Вселенная была бы столь им бедна, что возникновение жизни на основе углерода стало бы невозможным. Примерно через неделю после этого предсказания уровень возбуждения 7.65 МэВ был действительно открыт в эксперименте! Еще одним предсказанием антропного принципа может считаться и существование Мультивселенной[32] — совокупности огромного количества вселенных, в каждой из которых реализуется свой набор значений физических констант.

Мультивселенная — концепция довольно старая. Например, что-то подобное можно найти у Эдгара По в «Эврике»: «существует некая беспредельная последовательность Вселенных, более или менее подобных той, о которой мы имеем осведомленность…», «не имея доли в нашем происхождении, они не имеют доли в наших законах. Ни они не притягивают нас, ни мы их… Между ними и нами… нет влияний взаимных…». Своего рода Мультивселенной является и упоминавшийся выше мир Больцмана, состоящий из огромного числа отдельных «вселенных-флуктуаций».

Мультивселенная — благодатное поле деятельности и для писателей-фантастов, герои произведений которых часто скачут из вселенной во вселенную на суперзвездолетах (иногда, правда, авторы путают галактики и вселенные). Кстати, одно из первых художественных описаний своеобразной Мультивселенной было дано знаменитым польским писателем Станиславом Лемом в «Новой космогонии» (1971 год). «Новая космогония» — это речь вымышленного лауреата Нобелевской премии Альфреда Тесты, в которой он описывает Вселенную, разбитую на отдельные «ячейки». Внутри ячеек существуют «различные разновидности физики» и «цивилизации могли возникнуть лишь в немногих очагах, значительно удаленных друг от друга». Собственно фантастика начинается дальше, когда Теста описывает эволюцию такой Вселенной как своего рода состязание или игру сверхцивилизаций, возникших в некоторых из ячеек, по переделке законов физики внутри своих ареалов обитания и во Вселенной в целом.

Все написанное выше можно отнести к общим рассуждениям. Есть ли какие-нибудь физические основания в поддержку существования Мультивселенной? Первые свидетельства такой возможности появились в теории инфляции. Эта теория возникла на рубеже 1970–1980-х годов усилиями ряда российских и зарубежных физиков-теоретиков (Алексей Старобинский, Андрей Линде, Алан Гут и др.). К этому времени в космологии накопился ряд проблем, неразрешимых в рамках стандартной фридмановской космологии. Например, каким образом во Вселенной установилось однородное и изотропное распределение материи на больших масштабах, почему разные, очень далеко разнесенные и причинно не связанные области Вселенной имеют одинаковые свойства, почему глобальная геометрия нашего мира близка к евклидовой? Теория инфляции успешно разрешила эти и другие проблемы фридмановской космологии, но, естественно, породила новые.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука