Это, действительно, было очень непросто. Прежде, чем были получены первые результаты, Слайфер в течение нескольких лет экспериментировал со спектрографом и с фотоэмульсиями, пытаясь повысить эффективность наблюдений слабых объектов. Кроме того, наблюдения приходилось проводить с многочасовыми экспозициями, которые иногда растягивались на несколько ночей — на день пластинка плотно закрывалась в спектрографе, а следующей ночью наблюдения галактики возобновлялись. Дополнительную сложность придавало то, что телескоп, который использовал Слайфер, не был снабжен точной системой ведения, позволяющей автоматически удерживать в центре поля зрения объект, непрерывно меняющий свое положение из-за суточного вращения небесной сферы. Это означало, что длительные наблюдения на нем превращались почти в пытку — астроном ни на минуту не мог отвлечься от процесса наблюдений, так как ему все время приходилось вручную подправлять положение телескопа. (На вопрос, как он выдерживал столь утомительные наблюдения, Слайфер в шутку отвечал, что он «прислонялся к телескопу».)
Ученик Хаббла Алан Сендидж позднее охарактеризует подобные наблюдения так: «Наблюдения у телескопа, даже в наилучших условиях, утомительны. В худшем случае может быть холодно и тоскливо[11]…»
1915 год: Весто Слайфер публикует оценки лучевых скоростей для 15 туманностей. За исключением Андромеды и ее спутника, все остальные объекты демонстрируют смещение линий в красную область спектра, означающее их удаление от нас с типичными скоростями, достигающими нескольких сотен км/с. Максимальная измеренная скорость составляет +1100 км/с у NGC 4594.
В ноябре этого же года Альберт Эйнштейн завершает создание общей теории относительности (ОТО), ставшей основой релятивистской космологии.
1916 год: Джордж Паддок из Ликской обсерватории публикует анализ лучевых скоростей туманностей по данным Слайфера. В своем анализе он учел возможность того, что вся система известных туманностей удаляется, причем не только от нас, но и друг от друга. Для этого он впервые ввел в рассмотрение «
1917 год: Весто Слайфер довел число спиральных туманностей с измеренной скоростью до 25. В своей статье он отмечает, что средняя скорость туманностей составляет 570 км/с, что примерно в 30 раз превышает среднюю скорость движения звезд. Большие положительные скорости «подразумевают, что туманности удаляются со скоростью около 500 км/с». Далее он пишет: «Это может означать, что спиральные туманности разлетаются, однако их распределение на небе не согласуется с этим, поскольку они имеют тенденцию к образованию скоплений».
В этом же году Альберт Эйнштейн публикует первую космологическую модель, основанную на ОТО. Модель Эйнштейна — это пространственно-замкнутая, однородная и изотропная статическая Вселенная. Предположение об однородности и изотропности (сейчас оно называется
Пытаясь создать стационарную модель Вселенной, Эйнштейн столкнулся с тем, что ему необходимо чуть модифицировать свои уравнения поля, введя в них неизвестную фундаментальную константу Λ (ее также называют космологической постоянной). Если Λ>0, то учет соответствующего члена в уравнениях эквивалентен некоторому отталкиванию, противодействующему гравитационному притяжению обычного вещества. Вспомним «непрерывное чудо» («а continual miracle»), которое потребовалось Ньютону, чтобы предотвратить гравитационный коллапс его Вселенной (см. предыдущую главу). С поправкой на более чем двухсотлетнее развитие науки Λ-член Эйнштейна играет роль ньютоновского «чуда»!