Читаем Под знаком кванта полностью

Атомная бомба — это просто-напросто кусок урана-235 или плутония-239, а весь ее секрет — в трудности выделения этих делящихся изотопов. Минимальная масса атомной бомбы определяется критическими размерами куска урана или плутония, то есть такими размерами куска, в котором уже возможна цепная реакция, несмотря на то, что часть нейтронов уходит через его поверхность. Поскольку, в отличие от атомного реактора, в бомбе нет урана-238, поглощающего нейтроны, то надобность в замедлителе отпадает и поэтому объем ее не превышает одного литра. Критическая масса шарообразного куска урана-235 равна 47,8 кг, плутония-239 — всего 9,65 кг. Массу этих шаров можно значительно уменьшить, если предварительно сжать их с помощью обычной взрывчатки.

Для взрыва атомной бомбы достаточно соединить вместе ее части, размеры каждой из которых меньше критических. Мощность атомных бомб, сброшенных на Хиросиму (около 20 кг урана-235) и Нагасаки (около 5 кг плутония-239), эквивалентна взрыву 13 и 21 тыс. тонн тринитротолуола соответственно. В первом случае «сгорело» 0,7 кг урана, во втором — 1,2 кг плутония, масса бомб уменьшилась на 0,7 г и 1,2 г соответственно, температура при взрыве превысила температуру в центре Солнца, а грибообразное облако радиоактивного праха поднялось до высоты 15 км.

В современных ядерных бомбах, кроме энергии деления, используют энергию синтеза ядер дейтерия и трития по схеме

d + t-^4He + n + 17,6 МэВ.

Идею такой «водородной бомбы» еще в феврале 1942 г. обсуждали Ферми и Теллер, а в 1952 г. она уже была взорвана.

В водородной бомбе обычная плутониевая бомба служит запалом: при ее взрыве температура достигает 100 млн. градусов — в семь раз больше, чем в центре Солнца. При такой температуре два ядра изотопов водорода уже могут преодолеть кулоновский барьер отталкивания и слиться в ядро гелия, выделив при этом огромную энергию: при «горении» смеси дейтерия и трития освобождается энергии в три раза больше, чем при «сгорании» урана-235 равной массы.

В реальных конструкциях водородного (или термоядерного) оружия вместо смеси дейтерия и трития используют 304

дейтерид лития-6 6LiD. Тритий в такой бомбе готовится в момент взрыва атомной бомбы, в потоке нейтронов деления, в результате ядерной реакции n+6Li ---> 4He + t.

Критической массы для термоядерной бомбы не существует, а самая большая из взорванных до сих пор — в 5 тысяч раз мощнее бомбы, сброшенной на Хиросиму.

Всего в арсеналах разных стран накоплено сейчас более 50 тысяч водородных бомб, каждая из которых примерно в 20 раз мощнее первой атомной бомбы. Шесть стран владеют технологией изготовления ядерного оружия, и, по оценкам, еще восемь близки к его

<p><emphasis>АТОМНАЯ ПРОБЛЕМА</emphasis></p>

производству. Одним словом, сделать атомную бомбу сейчас — не проблема, значительно труднее понять, как теперь жить на Земле, если на каждого обитателя планеты, вклю

чая стариков и грудных младенцев, уже сейчас накоплено по 5 т ядерной взрывчатки.

Со времени открытия радиоактивности, выяснения ее природы и запасов энергии, с ней связанных, ученые всегда опасались, что, влекомые инстинктом познания, они невольно уподобятся злополучной Пандоре.

В 1903 г. Резерфорд как-то заметил: «Может статься, что какой-нибудь идиот в лаборатории взорвет ненароком весь мир».

В том же году Пьер Кюри с беспокойством говорил в своей нобелевской речи: «Можно думать, что в преступных руках радий станет очень опасным, и здесь уместно задать вопрос, заинтересовано ли человечество в дальнейшем раскрытии секретов природы, достаточно ли оно созрело для того, чтобы с пользой применить полученные знания, не могут ли они повлиять отрицательно на будущее человечества?»

Р. Оппенгеймер

В 1936 г., незадолго до открытия деления урана, Фрэнсис Астон возвращается к той же мысли: «...доступные источники внутриатомной энергии, безусловно, имеются повсюду вокруг нас, и настанет день, когда человек высвободит и поставит под контроль ее почти бесконечную силу. Мы не сможем помешать ему сделать это и лишь надеемся, что он не будет использовать ее исключительно для того, чтобы взорвать своего ближайшего соседа».

Ощущение этой изначальной антиномии между логикой познания и нравственным императивом не покидало ученых даже в моменты их наивысшего торжества: «Все мы теперь сукины дети»,— сказал Кеннет Бейнбридж Роберту Оппенгеймеру, глядя на зловещий атомный гриб в пустыне Аламогордо. (Он мог воочию удостовериться в справедливости формулы Эйнштейна Е — тс\ которую он сам же подтвердил количественно в 1933 г.) «Мы делали дело дьявола»,— скажет Роберт Оппенгеймер десять лет спустя.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука